
1

A Taxonomy of Computer Program Security Flaws, with Examples 1

CARL E. LANDWEHR, ALAN R. BULL, JOHN P. MCDERMOTT, AND WILLIAM S. CHOI
Information Technology Division, Code 5542, Naval Research Laboratory, Washington, D.C. 20375-5337

An organized record of actual flaws can be useful to computer system designers, programmers,
analysts, administrators, and users. This paper provides a taxonomy for computer program
security flaws together with an appendix that carefully documents 50 actual security flaws. These
flaws have all been described previously in the open literature, but in widely separated places. For
those new to the field of computer security, they provide a good introduction to the characteristics
of security flaws and how they can arise. Because these flaws were not randomly selected from
a valid statistical sample of such flaws, we make no strong claims concerning the likely
distribution of actual security flaws within the taxonomy. However, this method of organizing
security flaw data can help those who have custody of more representative samples to organize
them and to focus their efforts to remove and, eventually, to prevent the introduction of security
flaws.

Categories and Subject Descriptors: D.4.6[Operating Systems]:Security and Protection—access
controls; authentication; information flow controls; invasive software; K.6.5[Management of
Computing and Information Systems]: Security and Protection—authentication; invasive
software; D.2.0[Software Engineering]: General—protection mechanisms; D.2.9[Software
Engineering]: Management—life cycle; software configuration management;
K.6.5[Management of Computing and Information Systems]: Software Management—
software development; software maintenance

General Terms: Security

Additional Keywords and Phrases: Security flaw, error/defect classification, taxonomy

1. As revised for publication inACM Computing Surveys 26,3 (Sept., 1994). This version, prepared for elec-
tronic distribution, reflects final revisions by the authors but does not incorporateComputing Surveys’ copy
editing. It therefore resembles, but differs in minor details, from the published version. The figures, which
have been redrawn for electronic distribution are slightly less precise, pagination differs, and Table 1 has
been adjusted to reflect this..

INTRODUCTION

Knowing how systems have failed can help us build sys-
tems that resist failure. Petroski [1992] makes this point
eloquently in the context of engineering design, and al-
though software failures may be less visible than those of
the bridges he describes, they can be equally damaging.
But the history of software failures, apart from a few high-
ly visible ones [Leveson and Turner 1992; Spafford
1989], is relatively undocumented. This paper collects
and organizes a number of actual security flaws that have
caused failures, so that designers, programmers, and ana-
lysts may do their work with a more precise knowledge of
what has gone before.

Computer security flaws are any conditions or circum-
stances that can result in denial of service, unauthorized
disclosure, unauthorized destruction of data, or unautho-
rized modification of data [Landwehr 1981]. Our taxono-
my attempts to organize information about flaws so that,
as new flaws are added, readers will gain a fuller under-
standing of which parts of systems and which parts of the
system life cycle are generating more security flaws than
others. This information should be useful not only to de-
signers, but also to those faced with the difficult task of as-
sessing the security of a system already built. To
accurately assess the security of a computer system, an an-
alyst must find its vulnerabilities. To do this, the analyst
must understand the system thoroughly and recognize that

A Taxonomy of Computer Program Security Flaws 2 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

computer security flaws that threaten system security
may exist anywhere in the system.

There is a legitimate concern that this kind of infor-
mation could assist those who would attack computer
systems. Partly for this reason, we have limited the cases
described here to those that already have been publicly
documented elsewhere and are relatively old. We do not
suggest that we have assembled a representative random
sample of all known computer security flaws, but we
have tried to include a wide variety. We offer the taxon-
omy for the use of those who are presently responsible
for repelling attacks and correcting flaws. Their data, or-
ganized this way and abstracted, could be used to focus
efforts to remove security flaws and prevent their intro-
duction.

Other taxonomies [Brehmer and Carl 1993; Chillar-
ege et.al. 1992; Florac 1992] have recently been devel-
oped for organizing data about software defects and
anomalies of all kinds. These are primarily oriented to-
ward collecting data during the software development
process for the purpose of improving it. We are primari-
ly concerned with security flaws that are detected only
after the software has been released for operational use;
our taxonomy, while not incompatible with these efforts,
reflects this perspective.

What is a security flaw in a program?

This question is akin to ‘‘what is a bug?’’. In fact, an in-
advertently introduced security flaw in a programis a
bug. Generally, a security flaw is a part of a program that
can cause the system to violate its security requirements.

Finding security flaws, then, demands some knowledge
of system security requirements. These requirements
vary according to the system and the application, so we
cannot address them in detail here. Usually, they con-
cern identification and authentication of users, authori-
zation of particular actions, and accountability for
actions taken.

We have tried to keep our use of the term ‘‘flaw’’ in-
tuitive without conflicting with standard terminology.
The IEEE Standard Glossary of Software Engineering
Terminology [IEEE Computer Society 1990] includes
definitions of

• error: human action that produces an incorrect re-
sult (such as software containing a fault),

• fault: an incorrect step, process, or data definition in
a computer program, and

• failure: the inability of a system or component to
perform its required functions within specified
performance requirements.

A failure may be produced when a fault is encoun-
tered. This glossary listsbug as a synonym for bother-
ror andfault. We useflaw as a synonym for bug, hence
(in IEEE terms) as a synonym for fault, except that we
include flaws that have been inserted into a system inten-
tionally, as well as accidental ones.

IFIP WG10.4 has also published a taxonomy and def-
initions of terms [Laprie et.al. 1992] in this area. These
define faults as the cause of errors that may lead to fail-
ures. A system fails when the delivered service no long-
er complies with the specification. This definition of
‘‘error’’ seems more consistent with its use in ‘‘error de-
tection and correction’’ as applied to noisy communica-
tion channels or unreliable memory components than the
IEEE one. Again, our notion of flaw corresponds to that
of a fault, with the possibility that the fault may be intro-
duced either accidentally or maliciously.

Why look for security flaws in computer programs?

Early work in computer security was based on the ‘‘pen-
etrate and patch’’ paradigm: analysts searched for secu-
rity flaws and attempted to remove them. Unfortunately,
this task was, in most cases, unending: more flaws al-
ways seemed to appear [Neumann 1978; Schell 1979].
Sometimes the fix for a flaw introduced new flaws, and
sometimes flaws were found that could not be repaired
because system operation depended on them (e.g., cases
I3 and B1 in the Appendix).

This experience led researchers to seek better ways
of building systems to meet security requirements in the
first place instead of attempting to mend the flawed
systems already installed. Although some success has
been attained in identifying better strategies for building

CONTENTS

INTRODUCTION

1. PREVIOUS WORK

2. TAXONOMY

2.1 By Genesis

2.2 By Time of Introduction

2.3 By Location

 3. DISCUSSION

3.1 Limitations

3.2 Inferences

ACKNOWLEDGMENTS

REFERENCES

APPENDIX: SELECTED SECURITY FLAWS

A Taxonomy of Computer Program Security Flaws 3 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

systems [Department of Defense 1985; Landwehr 1983],
these techniques are not universally applied. More
importantly, they do not eliminate the need to test a
newly built or modified system (for example, to be sure
that flaws avoided in initial specification haven’t been
introduced in implementation).

1. PREVIOUS WORK

Most of the serious efforts to locate security flaws in
computer programs through penetration exercises have
used the Flaw Hypothesis Methodology developed in the
early 1970s [Linde 1975]. This method requires system
developers first to become familiar with the details of the
way the system works (its control structure), then to gen-
erate hypotheses as to where flaws might exist in a sys-
tem; to use system documentation and tests to confirm
the presence of a flaw; and finally to generalize the con-
firmed flaws and use this information to guide further ef-
forts. Although Linde [1975] provides lists of generic
system functional flaws and generic operating system at-
tacks, he does not provide a systematic organization for
security flaws.

In the mid-70s both the Research in Secured Operat-
ing Systems (RISOS) project conducted at Lawrence
Livermore Laboratories, and the Protection Analysis
project conducted at the Information Sciences Institute
of the University of Southern California (USC/ISI), at-
tempted to characterize operating system security flaws.
The RISOS final report [Abbott et. al. 1976] describes
seven categories of operating system security flaws:

incomplete parameter validation,
inconsistent parameter validation,
implicit sharing of privileged/confidential data,
asynchronous validation/inadequate serialization,
inadequate identification/authentication/authoriza-
tion,
violable prohibition/limit, and
exploitable logic error.

The report describes generic examples for each flaw cat-
egory and provides reasonably detailed accounts for 17
actual flaws found in three operating systems: IBM OS/
MVT, Univac 1100 Series, and TENEX. Each flaw is as-
signed to one of the seven categories.

The goal of the Protection Analysis (PA) project was
to collect error examples and abstract patterns from them
that, it was hoped, would be useful in automating the
search for flaws. According to the final report [Bisbey
and Hollingworth 1978], more than 100 errors that could
permit system penetrations were recorded from six dif-
ferent operating systems (GCOS, MULTICS, and Unix,

in addition to those investigated under RISOS). Unfor-
tunately, this error database was never published and no
longer exists [Bisbey 1990]. However, the researchers
did publish some examples, and they did develop a clas-
sification scheme for errors. Initially, they hypothesized
10 error categories; these were eventually reorganized
into four ‘‘global’’ categories:

• domain errors, including errors of exposed repre-
sentation, incomplete destruction of data within a
deallocated object, or incomplete destruction of its
context;

• validation errors, including failure to validate oper-
ands or to handle boundary conditions properly in
queue management;

• naming errors, including aliasing and incomplete
revocation of access to a deallocated object; and

• serialization errors, including multiple reference er-
rors and interrupted atomic operations.

Although the researchers felt that they had developed
a very successful method for finding errors in operating
systems, the technique resisted automation. Research at-
tention shifted from finding flaws in systems to develop-
ing methods for building systems that would be free of
such errors.

Our goals are more limited than those of these earlier
efforts in that we seek primarily to provide an under-
standable record of security flaws that have occurred.
They are also more ambitious, in that we seek to catego-
rize not only the details of the flaw, but also the genesis
of the flaw and the time and place it entered the system.

2. TAXONOMY

A taxonomy is not simply a neutral structure for catego-
rizing specimens. It implicitly embodies a theory of the
universe from which those specimens are drawn. It de-
fines what data are to be recorded and how like and un-
like specimens are to be distinguished. In creating a
taxonomy of computer program security flaws, we are in
this way creating a theory of such flaws, and if we seek
answers to particular questions from a collection of flaw
instances, we must organize the taxonomy accordingly.

Because we are fundamentally concerned with the
problems of building and operating systems that can en-
force security policies, we ask three basic questions
about each observed flaw:

• How did it enter the system?

• When did it enter the system?

• Where in the system is it manifest?

Each of these questions motivates a subsection of the
taxonomy, and each flaw is recorded in each subsection.

A Taxonomy of Computer Program Security Flaws 4 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

By reading case histories and reviewing the distribution
of flaws according to the answers to these questions, de-
signers, programmers, analysts, administrators, and us-
ers will, we hope, be better able to focus their respective
efforts to avoid introducing security flaws during system
design and implementation, to find residual flaws during
system evaluation or certification, and to administer and
operate systems securely.

Figures 1-3 display the details of the taxonomy by
genesis (how), time of introduction (when), and location
(where). Note that the same flaw will appear at least
once in each of these categories. Divisions and subdivi-
sions are provided within the categories; these, and their
motivation, are described in detail below. Where feasi-
ble, these subdivisions define sets of mutually exclusive
and collectively exhaustive categories. Often however,
especially at the finer levels, such a partitioning is infea-
sible, and completeness of the set of categories cannot be
assured. In general, we have tried to include categories
only where they might help an analyst searching for
flaws or a developer seeking to prevent them.

The description of each flaw category refers to appli-
cable cases (listed in the Appendix). Open-literature re-
ports of security flaws are often abstract and fail to
provide a realistic view of system vulnerabilities. Where
studies do provide examples of actual vulnerabilities in
existing systems, they are sometimes sketchy and incom-
plete lest hackers abuse the information. Our criteria for
selecting cases are:

(1) the case must present a particular type of vulner-
ability clearly enough that a scenario or pro-
gram that threatens system security can be
understood by the classifier, and

(2) the potential damage resulting from the vulnera-
bility described must be more than superficial.

Each case includes the name of the author or investi-
gator, the type of system involved, and a description of
the flaw.

A given case may reveal several kinds of security
flaws. For example, if a system programmer inserts a
Trojan horse1that exploits a covert channel2 to disclose
sensitive information, both the Trojan horse and the co-

1. Trojan horse: a program that masquerades
as a useful service but exploits rights of the pro-
gram’s user (not possessed by the author of the
Trojan horse) in a way the user does not intend.

2. Covert channel: a communication path in a
computer system not intended as such by the sys-
tem’s designers.

vert channel are flaws in the operational system; the
former will probably have been introduced maliciously,
the latter inadvertently. Of course, any system that per-
mits a user to invoke an uncertified program is vulnera-
ble to Trojan horses. Whether the fact that a system
permits users to install programs also represents a secu-
rity flaw is an interesting question. The answer seems to
depend on the context in which the question is asked.
Permitting users of, say, an air traffic control system or,
less threateningly, an airline reservation system, to in-
stall their own programs seems intuitively unsafe; it is a
flaw. On the other hand, preventing owners of PCs from
installing their own programs would seem ridiculously
restrictive.

The cases selected for the Appendix are but a small
sample, and we caution against unsupported generaliza-
tions based on the flaws they exhibit. In particular, read-
ers should not interpret the flaws recorded in the
Appendix as indications that the systems in which they
occurred are necessarily more or less secure than others.
In most cases, the absence of a system from the Appen-
dix simply reflects the fact that it has not been tested as
thoroughly or had its flaws documented as openly as
those we have cited. Readers are encouraged to commu-
nicate additional cases to the authors so that we can bet-
ter understand where security flaws really occur.

The balance of this section describes the taxonomy in
detail. The case histories can be read prior to the details
of the taxonomy, and readers may wish to read some or
all of the Appendix at this point. Particularly if you are
new to computer security issues, the case descriptions
are intended to illustrate the subtlety and variety of secu-
rity flaws that have actually occurred, and an apprecia-
tion of them may help you grasp the taxonomic
categories.

2.1 By Genesis

How does a security flaw find its way into a program? It
may be introducedintentionally or inadvertently. Differ-
ent strategies can be used to avoid, detect, or compensate
for accidental flaws as opposed to those intentionally in-
serted. For example, if most security flaws turn out to be
accidentally introduced, increasing the resources devot-
ed to code reviews and testing may be reasonably effec-
tive in reducing the number of flaws. But if most
significant security flaws are introduced maliciously,
these techniques are much less likely to help, and it may
be more productive to take measures to hire more trust-
worthy programmers, devote more effort to penetration
testing, and invest in virus detection packages. Our goal
in recording this distinction is, ultimately, to collect data

A Taxonomy of Computer Program Security Flaws 5 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Count Case ID’s

Genesis

Intentional

Malicious

Trojan Horse

Non-
Replicating

Replicating
(virus)

Inadvertent

Trapdoor

Logic/Time Bomb

Covert Channel
Storage

TimingNonmalicious

Other

Validation Error (Incomplete/Inconsistent)

Domain Error (Including Object Re-use, Residuals,
and Exposed Representation Errors)

Serialization/aliasing (Including TOCTTOU Errors)

Identification/Authentication Inadequate

Boundary Condition Violation (Including Resource
Exhaustion and Violable Constraint Errors)

Other Exploitable Logic Error

2
PC1
PC3

7 U1,PC2,PC4,MA1,
MA2,CA1,AT1

(2)

1

1

2

5

10

7

2

5

4

4

I4,I5,MT1,MU2,MU4,
MU8,U7,U11,U12,U13

(U1)(U10)

I8

DT1

I9,D2

I7,B1,U3,U6,U10

I3,I6,MT2,MT3,
MU3,UN1,D1

I1,I2

MU1,U2,U4,U5,U14

MT4,MU5,MU6,U9

MU7,MU9,U8,IN1

Fig. 1. Security flaw taxonomy: flaws by genesis. Parenthesized entries indicate secondary assignments.

Time of
Introduction

During
Development

During

During
Operation

Maintenance

Requirement/
Specification/
Design

Source Code

Object Code

I1, I2, I3, I4, I5, I6
I7 ,I9, MT2, MT3, MU4,
MU6, B1, UN1 ,U6, U7,
U9, U10, U13, U14, D2, IN1

MT1, MT4, MU1, MU2, MU5,
MU7, MU8, DT1, U2, U3, U4,
U5, U8, U11, U12

U1

D1, MU3, MU9

I8, PC1, PC2, PC3, PC4, MA1,
MA2, CA1, AT1

22

15

1

3

9

Count Case ID’s

Fig. 2. Security flaw taxonomy: flaws by time of introduction

A Taxonomy of Computer Program Security Flaws 6 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

that will provide a basis for deciding which strategies to
use in a particular context.

Characterizing intention is tricky: some features in-
tentionally placed in programs can at the same time inad-
vertently introduce security flaws (e.g., a feature that
facilitates remote debugging or system maintenance may
at the same time provide a trapdoor to a system). Where
such cases can be distinguished, they are categorized as
intentional but non-malicious. Not wishing to endow
programs with intentions, we nevertheless use the terms
‘‘malicious flaw,’’ ‘‘malicious code,’’ and so on, as
shorthand for flaws, code, etc., that have been introduced
into a system by an individual with malicious intent. Al-
though some malicious flaws could be disguised as inad-
vertent flaws, this distinction should be possible to make
in practice—inadvertently created Trojan horse pro-
grams are hardly likely! Inadvertent flaws in require-
ments or specifications ultimately manifest themselves
in the implementation; flaws may also be introduced in-
advertently during maintenance.

Both malicious flaws and non-malicious flaws can be
difficult to detect, the former because it has been inten-
tionally hidden and the latter because residual flaws may
be more likely to occur in rarely-invoked parts of the
software. One may expect malicious code to attempt to
cause significant damage to a system, but an inadvertent
flaw that is exploited by a malicious intruder can be
equally dangerous.

 2.1.1 Malicious Flaws

Malicious flaws have acquired colorful names, including
Trojan horse, trapdoor, time-bomb, andlogic-bomb. The
term ‘‘Trojan horse’’ was introduced by Dan Edwards
and recorded by James Anderson [Anderson 1972] to
characterize a particular computer security threat; it has
been redefined many times [Anderson 1972; Landwehr
1981; Denning 1982; Gasser 1988]. It generally refers to
a program that masquerades as a useful service but ex-
ploits rights of the program’s user—rights not possessed
by the author of the Trojan horse—in a way the user does
not intend.

Since the author of malicious code needs to disguise
it somehow so that it will be invoked by a non-malicious
user (unless the author means also to invoke the code, in
which case he or she presumably already possesses the
authorization to perform the intended sabotage), almost
any malicious code can be called a Trojan horse. A Tro-
jan horse that replicates itself by copying its code into
other program files (see case MA1) is commonly re-
ferred to as avirus [Cohen 1984; Pfleeger 1989]. One
that replicates itself by creating new processes or files to
contain its code, instead of modifying existing storage
entities, is often called aworm [Schoch and Hupp 1982].
Denning [1988] provides a general discussion of these
terms; differences of opinion about the term applicable
to a particular flaw or its exploitations sometimes occur
[Cohen 1984; Spafford 1989].

Location

Software

Operating
System

Support

Hardware

System Initialization

Memory Management

Process Management/
Scheduling

Device Management
(including I/O, networking)

File Management

Identification/Authentication

Other/Unknown

Privileged Utilities

Unprivileged Utilities

Application

8

2

10

3

5

1

10

1

1

3

6

Count Case ID’s

U5, U13, PC2, PC4, MA1,
MA2, AT1 ,CA1

MT3, MU5

I6, I9, MT1, MT2, MU2, MU3
MU4, MU6, MU7, UN1

I2, I3, I4

I1, I5, MU8, U2, U3, U9

MU1, DT1, U6, U11, D1

MT4

I7, B1, U4, U7, U8, U10, U12,
U14, PC1, PC3

U1

I8

MU9, D2, IN1

Fig. 3. Security flaw taxonomy: flaws by location

A Taxonomy of Computer Program Security Flaws 7 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

A trapdoor is a hidden piece of code that responds to
a special input, allowing its user access to resources
without passing through the normal security enforce-
ment mechanism (see case U1). For example, a pro-
grammer of automated teller machines (ATMs) might be
required to check a personal identification number (PIN)
read from a card against the number keyed in by the user.
If the numbers match, the user is to be permitted to enter
transactions. By adding a disjunct to the condition that
implements this test, the programmer can provide a trap-
door, shown in italics below:

if PINcard=PINkeyedOR PINkeyed=9999
then {permit transactions}

In this example, 9999 would be a universal PIN that
would work with any bank card submitted to the ATM.
Of course the code in this example would be easy for a
code reviewer, although not an ATM user, to spot, so a
malicious programmer would need to take additional
steps to hide the code that implements the trapdoor. If
passwords are stored in a system file rather than on a
user-supplied card, a special password known to an in-
truder mixed in a file of legitimate ones might be diffi-
cult for reviewers to find.

It might be argued that a login program with a trap-
door is really a Trojan horse in the sense defined above,
but the two terms are usually distinguished [Denning
1982]. Thompson [1984] describes a method for build-
ing a Trojan horse compiler that can install both itself
and a trapdoor in a Unix password-checking routine in
future versions of the Unix system.

A time-bomb or logic-bomb is a piece of code that re-
mains dormant in the host system until a certain ‘‘deto-
nation’’ time or event occurs (see case I8). When
triggered, a time-bomb may deny service by crashing the
system, deleting files, or degrading system response-
time. A time-bomb might be placed within either a rep-
licating or non-replicating Trojan horse.

2.1.2 Intentional, Non-Malicious Flaws

A Trojan horse program may convey sensitive informa-
tion to a penetrator overcovert channels. A covert chan-
nel is simply a path used to transfer information in a way
not intended by the system’s designers [Lampson 1973].
Since covert channels, by definition, are channels not
placed there intentionally, they should perhaps appear in
the category of inadvertent flaws. We categorize them as
intentional but non-malicious flaws because they fre-
quently arise in resource-sharing services that are inten-
tionally part of the system. Indeed, the most difficult
ones to eliminate are those that arise in the fulfillment of
essential system requirements. Unlike their creation,
their exploitation is likely to be malicious. Exploitation

of a covert channel usually involves a service program,
most likely a Trojan horse. This program generally has
access to confidential data and can encode that data for
transmission over the covert channel. It also will contain
a receiver program that ‘‘listens’’ to the chosen covert
channel and decodes the message for a penetrator. If the
service program could communicate confidential data
directly to a penetrator without being monitored, of
course, there would be no need for it to use a covert chan-
nel.

Covert channels are frequently classified as either
storage or timing channels. A storage channel transfers
information through the setting of bits by one program
and the reading of those bits by another. What distin-
guishes this case from that of ordinary operation is that
the bits are used to convey encoded information. Exam-
ples would include using a file intended to hold only au-
dit information to convey user passwords—using the
name of a file or perhaps status bits associated with it that
can be read by all users to signal the contents of the file.
Timing channels convey information by modulating
some aspect of system behavior over time, so that the
program receiving the information can observe system
behavior (e.g., the system’s paging rate, the time a cer-
tain transaction requires to execute, the time it takes to
gain access to a shared bus) and infer protected informa-
tion.

The distinction between storage and timing channels
is not sharp. Exploitation of either kind of channel re-
quires some degree of synchronization between the
sender and receiver. It also requires the ability to modu-
late the behavior of some shared resource. In practice,
covert channels are often distinguished on the basis of
how they can be detected: those detectable by informa-
tion flow analysis of specifications or code are consid-
ered storage channels.

Other kinds of intentional but non-malicious security
flaws are possible. Functional requirements that are
written without regard to security requirements can lead
to such flaws; one of the flaws exploited by the ‘‘Inter-
net worm’’ [Spafford 1989] (case U10) could be placed
in this category.

2.1.2 Inadvertant Flaws

Inadvertent flaws may occur in requirements; they may
also find their way into software during specification and
coding. Although many of these are detected and re-
moved through testing, some flaws can remain undetec-
ted and later cause problems during operation and
maintenance of the software system. For a software sys-
tem composed of many modules and involving many
programmers, flaws are often difficult to find and correct

A Taxonomy of Computer Program Security Flaws 8 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

because module interfaces are inadequately documented
and global variables are used. The lack of documentation
is especially troublesome during maintenance when at-
tempts to fix existing flaws often generate new flaws be-
cause maintainers lack understanding of the system as a
whole. Although inadvertent flaws may not pose an im-
mediate threat to the security of the system, the weakness
resulting from a flaw may be exploited by an intruder
(see case D1).

There are many possible ways to organize flaws with-
in this category. Recently, Chillarege, et. al. [1992] and
Sullivan and Chillarege [1992] have published classifi-
cations of defects (not necessarily security flaws) found
in commercial operating systems and databases. Florac’s
framework [1992] supports counting problems and de-
fects but does not attempt to characterize defect types.
The efforts of Bisbey and Hollingworth, [1978] and Ab-
bott [1976] reviewed in Section 1 provide classifications
specifically for security flaws.

Our goals for this part of the taxonomy are primarily
descriptive: we seek a classification that provides a rea-
sonable map of the terrain of computer program security
flaws, permitting us to group intuitively similar kinds of
flaws and separate different ones. Providing secure oper-
ation of a computer often corresponds to building fences
between different pieces of software (or different instan-
tiations of the same piece of software), to building gates
in those fences, and to building mechanisms to control
and monitor traffic through the gates. Our taxonomy,
which draws primarily on the work of Bisbey and Ab-
bott, reflects this view. Knowing the types and distribu-
tion of actual, inadvertent flaws among these kinds of
mechanisms should provide information that will help
for designers, programmers, and analysts focus their ac-
tivities.

Inadvertent flaws can be classified as flaws related to

validation errors,
domain errors,
serialization/aliasing errors,
errors of inadequate identification/authentication,
boundary condition errors,and
other exploitable logic errors.

Validation flaws may be likened to a lazy gatekeep-
er—one who fails to check all the credentials of a traveler
seeking to pass through a gate. They occur when a pro-
gram fails to check that the parameters supplied or re-
turned to it conform to its assumptions about them, or
when these checks are misplaced, so they are ineffectual.
These assumptions may include the number of parame-
ters provided, the type of each, the location or maximum
length of a buffer, or the access permissions on a file. We
lump together cases of incomplete validation (where
some but not all parameters are checked) and inconsis-

tent validation (where different interface routines to a
common data structure fail to apply the same set of
checks).

Domain flaws, which correspond to holes in the fenc-
es, occur when the intended boundaries between protec-
tion environments are porous. For example, a user who
creates a new file and discovers that it contains informa-
tion from a file deleted by a different user has discovered
a domain flaw. (This kind of error is sometimes referred
to as a problem withobject reuse or with residuals.) We
also include in this category flaws ofexposed represen-
tation [Bisbey and Hollingworth 1978] in which the low-
er-level representation of an abstract object, intended to
be hidden in the current domain, is in fact exposed (see
cases B1 and DT1). Errors classed by Abbott as ‘‘im-
plicit sharing of privileged/confidential data’’ will gen-
erally fall in this category.

A serialization flaw permits the asynchronous behav-
ior of different system components to be exploited to
cause a security violation. In terms of the fences and
gates metaphor, these reflect a forgetful gatekeeper—
one who perhaps checks all credentials, but then gets dis-
tracted and forgets the result. These flaws can be partic-
ularly difficult to discover. A security-critical program
may appear to correctly validate all of its parameters, but
the flaw permits the asynchronous behavior of another
program to change one of those parameters after it has
been checked but before it is used. Many time-of-check-
to-time-of-use (TOCTTOU) flaws will fall in this cate-
gory, although some may be classed as validation errors
if asynchrony is not involved. We also include in this
categoryaliasing flaws, in which the fact that two names
exist for the same object can cause its contents to change
unexpectedly and, consequently, invalidate checks al-
ready applied to it.

An identification/authentication flaw is one that per-
mits a protected operation to be invoked without suffi-
ciently checking the identity and authority of the
invoking agent. These flaws could perhaps be counted
as validation flaws, since presumably some routine is
failing to validate authorizations properly. However, a
sufficiently large number of cases have occurred in
which checking the identity and authority of the user ini-
tiating an operation has in fact been neglected to keep
this as a separate category.

Boundary condition flaws typically reflect omission
of checks to assure constraints (e.g., on table size, file al-
location, or other resource consumption) are not exceed-
ed. These flaws may lead to system crashes or degraded
service, or they may cause unpredictable behavior. A
gatekeeper who, when his queue becomes full, decides to
lock the gate and go home, might represent this situation.

A Taxonomy of Computer Program Security Flaws 9 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Finally, we include as a catchall a category for other
exploitable logic errors. Bugs that can be invoked by us-
ers to cause system crashes, but that don’t involve
boundary conditions, would be placed in this category,
for example.

2.2 By Time of Introduction

The software engineering literature includes a variety of
studies (e.g., [Weiss and Basili 1985], [Chillarege et. al.
1992]) that have investigated the general question of
how and when errors are introduced into software. Part
of the motivation for these studies has been to improve
the process by which software is developed: if the parts
of the software development cycle that produce the most
errors can be identified, efforts to improve the software
development process can be focused to prevent or re-
move them. But is the distribution of when in the life cy-
cle security flaws are introduced the same as the
distribution for errors generally? Classifying identified
security flaws, both intentional and inadvertent, accord-
ing to the phase of the system life cycle in which they
were introduced can help us find out.

Models of the system life cycle and the software de-
velopment process have proliferated in recent years. To
permit us to categorize security flaws from a wide vari-
ety of systems, we need a relatively simple and abstract
structure that will accommodate a variety of such mod-
els. Consequently, at the highest level we distinguish
only three different phases in the system life cycle when
security flaws may be introduced: thedevelopment
phase, which covers all activities up to the release of the
initial operational version of the software, themainte-
nance phase, which covers activities leading to changes
in the software performed under configuration control
after the initial release, and theoperational phase, which
covers activities to patch software while it is in opera-
tion, including unauthorized modifications (e.g., by a vi-
rus). Although the periods of the operational and
maintenance phases are likely to overlap, if not coincide,
they reflect distinct activities, and the distinction seems
to fit best in this part of the overall taxonomy.

2.2.1 During Development

Although iteration among the phases of software devel-
opment is a recognized fact of life, the different phases
still comprise distinguishable activities. Requirements
are defined, specifications are developed based on new
(or changed) requirements, source code is developed
from specifications, and object code is generated from
the source code. Even when iteration among phases is
made explicit in software process models, these activi-

ties are recognized, separate categories of effort, so it
seems appropriate to categorize flaws introduced during
software development as originating inrequirements
and specifications, source code, orobject code.

Requirements and Specifications

Ideally, software requirements describewhat a particular
program or system of programs must do.How the pro-
gram or system is organized to meet those requirements
(i.e., the software design) is typically recorded in a vari-
ety of documents, referred to collectively asspecifica-
tions. Although we would like to distinguish flaws
arising from faulty requirements from those introduced
in specifications, this information is lacking for many of
the cases we can report, so we ignore that distinction in
this work.

A major flaw in a requirement is not unusual in a
large software system. If such a flaw affects security and
its correction is not deemed cost-effective, the system
and the flaw may remain. For example, an early multi-
programming operating system performed some I/O-re-
lated functions by having the supervisor program
execute code located in user memory while in supervisor
state (i.e., with full system privileges). By the time this
was recognized as a security flaw, its removal would
have caused major incompatibilities with other software,
and it was not fixed. Case I3 reports a related flaw.

Requirements and specifications are relatively un-
likely to contain maliciously introduced flaws. They are
normally reviewed extensively, so a specification for a
trapdoor or a Trojan horse would have to be well-dis-
guised to avoid detection. More likely are flaws that
arise because of competition between security require-
ments and other functional requirements (see case I7).
For example, security concerns might dictate that pro-
grams never be modified at an operational site. But if the
delay in repairing errors detected in system operation is
perceived to be too great, there will be pressure to pro-
vide mechanisms in the specification to permit on-site
reprogramming or testing (see case U10). Such mecha-
nisms can provide built-in security loopholes. Also pos-
sible are inadvertent flaws that arise because of missing
requirements or undetected conflicts among require-
ments.

Source Code

The source code implements the design of the software
system given by the specifications. Most flaws in source
code, whether inadvertent or intentional, can be detected
through a careful examination of it. The classes of inad-
vertent flaws described previously apply to source code.

Inadvertent flaws in source code are frequently a by-
product of inadequately defined module or process inter-

A Taxonomy of Computer Program Security Flaws 10 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

faces. Programmers attempting to build a system to in-
adequate specifications are likely to misunderstand the
meaning (if not the type) of parameters to be passed
across an interface or the requirements for synchronizing
concurrent processes. These misunderstandings mani-
fest themselves as source code flaws. Where the source
code is clearly implemented as specified, we assign the
flaw to the specification (cases I3 and MU6, for exam-
ple). Where the flaw is manifest in the code and we can-
not confirm that it corresponds to the specification, we
assign the flaw to the source code (see cases MU1, U4,
U8). Readers should be aware of the difficulty of making
some of these assignments.

Intentional but non-malicious flaws can be intro-
duced in source code for several reasons. A programmer
may introduce mechanisms that are not included in the
specification but that are intended to help in debugging
and testing the normal operation of the code. However,
if the test scaffolding circumvents security controls and
is left in place in the operational system, it provides a se-
curity flaw. Efforts to be "efficient" can also lead to in-
tentional but non-malicious source-code flaws, as in case
DT1. Programmers may also decide to provide undocu-
mented facilities that simplify maintenance but provide
security loopholes—the inclusion of a ‘‘patch area’’ that
facilitates reprogramming outside the scope of the con-
figuration management system would fall in this catego-
ry.

Technically sophisticated malicious flaws can be in-
troduced at the source code level. A programmer work-
ing at the source code level, whether an authorized
member of a development team or an intruder, can in-
voke specific operations that will compromise system se-
curity. Although malicious source code can be detected
through manual review of software, much software is de-
veloped without any such review; source code is fre-
quently not provided to purchasers of software packages
(even if it is supplied, the purchaser is unlikely to have
the resources necessary to review it for malicious code).
If the programmer is aware of the review process, he may
well be able to disguise the flaws he introduces.

A malicious source code flaw may be introduced di-
rectly by any individual who gains write access to source
code files, but source code flaws can also be introduced
indirectly. For example, if a programmer authorized to
write source code files unwittingly invokes a Trojan
horse editor (or compiler, linker, loader, etc.), the Trojan
horse could use the programmer’s privileges to modify
source code files. Instances of subtle indirect tampering
with source code are difficult to document, but Trojan
horse programs that grossly modify all a user’s files, and
hence the source code files, have been created (see cases
PC1, PC2).

Object Code

Object code programs are generated by compilers or as-
semblers and represent the machine-readable form of the
source code. Because most compilers and assemblers
are subjected to extensive testing and formal validation
procedures before release, inadvertent flaws in object
programs that are not simply a translation of source code
flaws are rare, particularly if the compiler or assembler
is mature and has been widely used. When such errors
do occur as a result of errors in a compiler or assembler,
they typically show themselves through incorrect behav-
ior of programs in unusual cases, so they can be quite dif-
ficult to track down and remove.

Because this kind of flaw is rare, the primary security
concern at the object code level is with malicious flaws.
Because object code is difficult for a human to make
sense of (if it were not, software companies would not
have different policies for selling source code and object
code for their products), it is a good hiding place for ma-
licious security flaws (again, see case U1 [Thompson
1984]).

Lacking system and source code documentation, an
intruder will have a hard time patching source code to in-
troduce a security flaw without simultaneously altering
the visible behavior of the program. The insertion of a
malicious object code module or replacement of an ex-
isting object module by a version of it that incorporates
a Trojan horse is a more common threat. Writers of self-
replicating Trojan horses (viruses) [Pfleeger 1989] have
typically taken this approach: a bogus object module is
prepared and inserted in an initial target system. When
it is invoked, perhaps during system boot or running as a
substitute version of an existing utility, it can search the
disks mounted on the system for a copy of itself and, if it
finds none, insert one. If it finds a related, uninfected
version of a program, it can replace it with an infected
copy . When a user unwittingly moves an infected pro-
gram to a different system and executes it, the virus gets
another chance to propagate itself. Instead of replacing
an entire program, a virus may append itself to an exist-
ing object program, perhaps as a segment to be executed
first (see cases PC4, CA1). Creating a virus generally re-
quires some knowledge of the operating system and pro-
gramming conventions of the target system; viruses,
especially those introduced as object code, typically can-
not propagate to different host hardware or operating
systems.

2.2.2 During Maintenance

Inadvertent flaws introduced during maintenance are of-
ten attributable to the maintenance programmer’s failure

A Taxonomy of Computer Program Security Flaws 11 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

to understand the system as a whole. Since software pro-
duction facilities often have a high personnel turnover
rate, and because system documentation is often inade-
quate, maintenance actions can have unpredictable side
effects. If a flaw is fixed on an ad hoc basis without per-
forming a backtracking analysis to determine the origin
of the flaw, it will tend to induce other flaws and this cy-
cle will continue. Software modified during mainte-
nance should be subjected to the same review as newly
developed software; it is subject to the same kinds of
flaws. Case D1 graphically shows that system upgrades,
even when performed in a controlled environment and
with the best of intentions, can introduce new flaws. In
this case, a flaw was inadvertently introduced into a sub-
sequent release of a DEC operating system following its
successful evaluation at the C2 level of the Trusted Com-
puter System Evaluation Criteria (TCSEC) [Department
of Defense 1985].

System analysts should also be aware of the possibil-
ity of malicious intrusion during the maintenance stage.
In fact, viruses are more likely to be present during the
maintenance stage, since viruses by definition spread the
infection through executable codes.

2.2.3 During Operation

The well-publicized instances of virus programs [Den-
ning 1988; Elmer-Dewitt 1988, Ferbrache 1992] drama-
tize the need for the security analyst to consider the
possibilities for unauthorized modification of operation-
al software during its operational use. Viruses are not the
only means by which modifications can occur: depend-
ing on the controls in place in a system, ordinary users
may be able to modify system software or install replace-
ments; with a stolen password, an intruder may be able
to do the same thing. Furthermore, software brought into
a host from a contaminated source (e.g., software from a
public bulletin board that has, perhaps unknown to its au-
thor, been altered) may be able to modify other host soft-
ware without authorization (see case MA1).

2.3 By Location

A security flaw can be classified according to where in
the system it is introduced or found. Most computer se-
curity flaws occur in software, but flaws affecting secu-
rity may occur in hardware as well. Although this
taxonomy principally addresses software flaws, pro-
grams can with increasing facility be cast in hardware.
This fact and the possibility that malicious software may
exploit hardware flaws motivates a brief section address-
ing them. A flaw in a program that has been frozen in sil-
icon is still a program flaw to us; it would be placed in

the appropriate category under ‘‘Operating System’’
rather than under ‘‘Hardware.’’ We reserve the use of
the latter category for cases in which hardware exhibits
security flaws that did not originate as errors in pro-
grams.

2.3.1 Software Flaws

In classifying the place a software flaw is introduced, we
adopt the view of a security analyst who is searching for
such flaws. Where should one look first? Because the
operating system typically defines and enforces the ba-
sic security architecture of a system—the fences, gates,
and gatekeepers—flaws in those security-critical por-
tions of the operating system are likely to have the most
far-reaching effects, so perhaps this is the best place to
begin. But the search needs to be focused. The taxono-
my for this area suggests particular system functions that
should be scrutinized closely. In some cases, implemen-
tation of these functions may extend outside the operat-
ing system perimeter into support and application
software; in this case, that software must also be re-
viewed.

Software flaws can occur inoperating system pro-
grams, support software, orapplication (user) software.
This is a rather coarse division, but even so the bound-
aries are not always clear.

Operating System Programs

Operating system functions normally include memory
and processor allocation, process management, device
handling, file management, and accounting, although
there is no standard definition. The operating system de-
termines how the underlying hardware is used to define
and separate protection domains, authenticate users,
control access, and coordinate the sharing of all system
resources. In addition to functions that may be invoked
by user calls, traps, or interrupts, operating systems of-
ten include programs and processes that operate on be-
half of all users. These programs provide network
access and mail service, schedule invocation of user
tasks, and perform other miscellaneous services. Sys-
tems often must grant privileges to these utilities that
they deny to individual users. Finally, the operating sys-
tem has a large role to play in system initialization. Al-
though in a strict sense initialization may involve
programs and processes outside the operating system
boundary, this software is usually intended to be run
only under highly controlled circumstances and may
have many special privileges, so it seems appropriate to
include it in this category.

We categorize operating system security flaws ac-
cording to whether they occur in the functions for

A Taxonomy of Computer Program Security Flaws 12 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

system initialization,
memory management,
process management,
device management (including networking),
file management, or
identification/authentication.

We include another/unknown category for flaws that do
not fall into any of the preceding classes. It would be
possible to orient this portion of the taxonomy more
strongly toward specific, security-related functions of the
operating system -- access checking, domain definition
and separation, object reuse, and so on. We have chosen
the categorization above partly because it comes closer
to reflecting the actual layout of typical operating sys-
tems, so that it will correspond more closely to the phys-
ical structure of the code a reviewer examines. The code
for even a single security-related function is sometimes
distributed in several separate parts of the operating sys-
tem (regardless of whether thisought to be so). In prac-
tice, it is more likely that a reviewer will be able to draw
a single circle around all of the process management
code than around all of the discretionary access control
code. A second reason for our choice is that the first tax-
onomy (by genesis) provides, in the subarea of inadvert-
ent flaws, a structure that reflects some security
functions, and repeating this structure would be redun-
dant.

System initialization, although it may be handled
routinely, is often complex. Flaws in this area can occur
either because the operating system fails to establish the
initial protection domains as specified (for example, it
may set up ownership or access control information im-
properly) or because the system administrator has not
specified a secure initial configuration for the system. In
case U5, improperly set permissions on the mail directo-
ry led to a security breach. Viruses commonly try to at-
tach themselves to system initialization code, since this
provides the earliest and most predictable opportunity to
gain control of the system (see cases PC1-4, for exam-
ple).

Memory management and process management are
functions the operating system provides to control stor-
age space and CPU time. Errors in these functions may
permit one process to gain access to another improperly,
as in case I6, or to deny service to others, as in case MU5.

Device management often includes complex pro-
grams that operate in parallel with the CPU. These fac-
tors make the writing of device handling programs both
challenging and prone to subtle errors that can lead to se-
curity flaws (see case I2). Often, these errors occur when
the I/O routines fail to respect parameters provided them
(case U12) or they validate parameters provided in stor-

age locations that can be altered, directly or indirectly, by
user programs after checks are made (case I3).

File systems typically use the process, memory, and
device management functions to create long-term stor-
age structures. With few exceptions, the operating sys-
tem boundary includes the file system, which often
implements access controls to permit users to share and
protect their files. Errors in these controls, or in the man-
agement of the underlying files, can easily result in secu-
rity flaws (see cases I1, MU8, and U2).

The identification and authentication functions of the
operating system usually maintain special files for user
IDs and passwords and provide functions to check and
update those files as appropriate. It is important to scru-
tinize not only these functions, but also all of the possible
ports of entry into a system to ensure that these functions
are invoked before a user is permitted to consume or
control other system resources.

Support Software

Support software comprises compilers, editors, debug-
gers, subroutine or macro libraries, database manage-
ment systems, and any other programs not properly
within the operating system boundary that many users
share. The operating system may grant special privileg-
es to some such programs; these we call privileged util-
ities. In Unix, for example, any ‘‘setuid’’ program
owned by ‘‘root’’ effectively runs with access-checking
controls disabled. This means that any such program
will need to be scrutinized for security flaws, since dur-
ing its execution one of the fundamental security-check-
ing mechanisms is disabled.

Privileged utilities are often complex and sometimes
provide functions that were not anticipated when the op-
erating system was built. These characteristics make
them difficult to develop and likely to have flaws that,
because they are also granted privileges, can compro-
mise security. For example, daemons, which may act on
behalf of a sequence of users and on behalf of the system
as well, may have privileges for reading and writing spe-
cial system files or devices (e.g., communication lines,
device queues, mail queues) as well as for files belong-
ing to individual users (e.g., mailboxes). They frequent-
ly make heavy use of operating system facilities, and
their privileges may turn a simple programming error
into a penetration path. Flaws in daemons providing re-
mote access to restricted system capabilities have been
exploited to permit unauthenticated users to execute ar-
bitrary system commands (case U12) and to gain system
privileges by writing the system authorization file (case
U13).

A Taxonomy of Computer Program Security Flaws 13 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Even unprivileged software can represent a signifi-
cant vulnerability because these programs are widely
shared, and users tend to rely on them implicitly. The
damage inflicted by flawed, unprivileged support soft-
ware (e.g., by an embedded Trojan horse) is normally
limited to the user who invokes that software. In some
cases, however, since it may be used to compile a new re-
lease of a system, support software can even sabotage
operating system integrity (case U1). Inadvertent flaws
in support software can also cause security flaws (case
I7); intentional but non-malicious flaws in support soft-
ware have also been recorded (case B1).

Application Software

We categorize programs that have no special system
privileges and are not widely shared as application soft-
ware. Damage caused by inadvertent software flaws at
the application level is usually restricted to the executing
process, since most operating systems can prevent one
process from damaging another. This does not mean that
application software cannot do significant damage to a
user’s own stored files, however, as many victims of
Trojan horse and virus programs have become painfully
aware. An application program generally executes with
all the privileges of the user who invokes it, including the
ability to modify permissions, read, write, or delete any
files that user owns. In the context of most personal
computers now in use, this means that an errant or mali-
cious application program can, in fact, destroy all the in-
formation on an attached hard disk or writeable floppy
disk.

Inadvertent flaws in application software that cause
program termination or incorrect output, or can generate
undesirable conditions such as infinite looping have
been discussed previously. Malicious intrusion at the
application software level usually requires access to the
source code (although a virus could conceivably attach
itself to application object code) and can be accom-
plished in various ways, as discussed in Section 2.2.

2.3.2 Hardware

Issues of concern at the hardware level include the de-
sign and implementation of processor hardware, micro-
programs, and supporting chips, and any other hardware
or firmware functions used to realize the machine’s in-
struction set architecture. It is not uncommon for even
widely distributed processor chips to be incompletely
specified, to deviate from their specifications in special
cases, or to include undocumented features. Inadvertent
flaws at the hardware level can cause problems such as
improper synchronization and execution, bit loss during
data transfer, or incorrect results after execution of arith-
metic or logical instructions (see case MU9). Intentional

but non-malicious flaws can occur in hardware, particu-
larly if the manufacturer includes undocumented fea-
tures (for example, to assist in testing or quality control).
Hardware mechanisms for resolving resource contention
efficiently can introduce covert channels (see case D2).
Malicious modification of installed hardware (e.g., in-
stalling a bogus replacement chip or board) generally re-
quires physical access to the hardware components, but
microcode flaws can be exploited without physical ac-
cess. An intrusion at the hardware level may result in
improper execution of programs, system shutdown, or,
conceivably, the introduction of subtle flaws exploitable
by software.

3. DISCUSSION

We have suggested that a taxonomy defines a theory of
a field, but an unpopulated taxonomy teaches us little.
For this reason, the security flaw examples documented
in the appendix are as important to this paper as the tax-
onomy. Reviewing the examples should help readers
understand the distinctions that we have made among the
various categories and how to apply those distinctions to
new examples. In this section, we comment briefly on
the limitations of the taxonomy and the set of examples,
and we suggest techniques for summarizing flaw data
that could help answer the questions we used in Section
2 to motivate the taxonomy.

3.1 Limitations

The development of this taxonomy focused largely,
though not exclusively, on flaws in operating systems.
We have not tried to distinguish or categorize the many
kinds of security flaws that might occur in application
programs for database management, word processing,
electronic mail, and so on. We do not suggest that there
are no useful structures to be defined in those areas; rath-
er, we encourage others to identify and document them.
Although operating systems tend to be responsible for
enforcing fundamental system security boundaries, the
detailed, application-dependent access control policies
required in a particular environment are in practice often
left to the application to enforce. In this case, application
system security policies can be compromised even when
operating system policies are not.

While we hope that this taxonomy will stimulate oth-
ers to collect, abstract, and report flaw data, readers
should recognize that this is an approach forevaluating
problems in systems as they have been built. Used intel-
ligently, information collected and organized this way

A Taxonomy of Computer Program Security Flaws 14 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

can help us build stronger systems in the future, but some
factors that affect the security of a system are not cap-
tured by this approach. For example, any system in
which there is a great deal of software that must be trust-
ed is more likely to contain security flaws than one in
which only a relatively small amount of code could con-
ceivably cause security breaches.

Security failures, like accidents, often are triggered
by an unexpected combination of events. In such cases,
the assignment of a flaw to a category may rest on rela-
tively fine distinctions. So, we should avoid drawing
strong conclusions from the distribution of a relatively
small number of flaw reports.

Finally, the flaws reported in the appendix are select-
ed, not random or comprehensive, and they are not re-
cent. Flaws in networks and applications are becoming
increasingly important, and the distribution of flaws
among the categories we have defined may not be sta-
tionary. So, any conclusions based strictly on the flaws
captured in the appendix must remain tentative.

3.1 Inferences

Despite these limitations, it is important to consider what
kinds of inferences we could draw from a set of flaw data
organized according to the taxonomy. Probably the most
straightforward way to display such data is illustrated in
Figs. 1-3. By listing the case identifiers and counts with-
in each category, the frequency of flaws across catego-
ries is roughly apparent, and this display can be used to
give approximate answers to the three questions that mo-
tivated the taxonomy: how, when, and where do security
flaws occur? But this straightforward approach makes
it difficult to perceive relationships among the three tax-
onomies: determining whether there is any relationship
between the time a flaw is introduced and its location in
the system, for example, is relatively difficult.

To provide more informative views of collected data,
we propose the set of scatter plots shown in Figs. 4-7.
Figure 4 captures the position of each case in all three of
the taxonomies (by genesis, time, and location). Flaw lo-
cation and genesis are plotted on thex andy axes, respec-
tively, while the symbol plotted reflects the time the flaw
was introduced. By choosing an appropriate set of sym-
bols, we have made it possible to distinguish cases that
differ in any single parameter. If two cases are catego-
rized identically, however, their points will coincide ex-
actly and only a single symbol will appear in the plot.
Thus from Figure 4 we can distinguish those combina-
tions of all categories that never occur from those that do,
but information about the relative frequency of cases is
obscured.

Figures 5-7 remedy this problem. In each of these
figures, two of the three categories are plotted on thex
andy axes, and the number of observations correspond-
ing to a pair of categories controls the diameter of the cir-
cle used to plot that point. Thus a large circle indicates
several different flaws in a given category and a small
circle indicates only a single occurrence. If a set of flaw
data reveals a few large-diameter circles, efforts at flaw
removal or prevention might be targeted on the problems
these circles reflect. Suppose for a moment that data
plotted in Figures 4-7 were in fact a valid basis for infer-
ring the origins of security flaws generally. What actions
might be indicated? The three large circles in the lower
left corner of Fig. 6 might, for example, be taken as a sig-
nal that more emphasis should be placed on domain def-
inition and on parameter validation during the early
stages of software development.

Because we do not claim that this selection of securi-
ty flaws is statistically representative, we cannot use
these plots to draw strong conclusions about how, when,
or where security flaws are most likely to be introduced.
However, we believe that the kinds of plots shown would
be an effective way to abstract and present information
from more extensive, and perhaps more sensitive, data
sets.

We also have some observations based on our expe-
riences in creating the taxonomy and applying it to these
examples. It seems clear that security breaches, like ac-
cidents, typically have several causes. Often, unwarrant-
ed assumptions about some aspect of system behavior
lead to security flaws. Problems arising from asynchro-
nous modification of a previously checked parameter il-
lustrate this point: the person who coded the check
assumed that nothing could cause that parameter to
change before its use—when an asynchronously operat-
ing process could in fact do so. Perhaps the most danger-
ous assumption is that security need not be addressed—
that the environment is fundamentally benign, or that se-
curity can be added later. Both Unix and personal com-
puter operating systems clearly illustrate the cost of this
assumption. One cannot be surprised when systems de-
signed without particular regard to security requirements
exhibit security flaws. Those who use such systems live
in a world of potentially painful surprises.

APPENDIX: SELECTED SECURITY FLAWS

The following case studies exemplify security flaws.
Without making claims as to the completeness or
representativeness of this set of examples, we believe
they will help designers know what pitfalls to avoid and
security analysts know where to look when examining

A Taxonomy of Computer Program Security Flaws 15 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Other Intentional

Covert Timing Chan.

Covert Storage Chan.

Time / Logic Bomb

Trapdoor

Virus

Trojan horse

Other inadvertent

Bd. Condition Viol.

Identification/Auth.

Serialization/Alias.

Domain

Validation

Sys-
tem

Me-
mory
Mgmt

Pro-
cess
MgmtInit

De-
vice
Mgmt

File
Mgmt

Ident./
Auth.

Other/
Un-
known

Priv.
Util-
ities

Unpriv.
Util-
ities

Appli-
ca-
tions

Hard-
ware

Other Intentional

Covert Timing Chan.

Covert Storage Chan.

Time / Logic Bomb

Trapdoor

Virus

Trojan horse

Other inadvertent

Bd. Condition Viol.

Identification/Auth.

Serialization/Alias.

Domain

Validation

Sys-
tem

Me-
mory
Mgmt

Pro-
cess
MgmtInit

De-
vice
Mgmt

File
Mgmt

Ident./
Auth.

Other/
Un-
known

Priv.
Util-
ities

Unpriv.
Util-
ities

Appli-
ca-
tions

Hard-
ware

Flaw Location

F
la

w
 G

en
es

is

Fig. 4 -- Example flaws: genesis vs location, over life-cycle

Flaw Location

Fig. 5 -- Example flaws: genesis vs location;
 N = number of examples in Appendix

Flaw Genesis

Rqmnts/Spec/Design

Source Code
Object Code

Maintenance
Operation

N=6

N=4

N=3

N=2
N=1

A Taxonomy of Computer Program Security Flaws 16 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Hardware

Applications

Unpriv.Utilities

Priv. Utilities

Other/Unknown

Ident./Auth.

File Mgmt.

Device Mgmt.

Process Mgmt.

Memory Mgmt.

System Init.

Rqmt/
Spec/
Design

Source
Code

Object
Code

Mainte-
nance

Opera-
tion

Time in Life-Cycle When Flaw Was Introduced

Fig. 7 -- Example flaws: location vs time of introduction;
N = number of examples in Appendix

Flaw Location

Other Intentional

Covert Timing Chan.

Covert Storage Chan.

Time / Logic Bomb

Trapdoor

Virus

Trojan horse

Other inadvertent

Bd. Condition Viol.

Identification/Auth.

Serialization/Alias.

Domain

Validation

Rqmt/
Spec/
Design

Source
Code

Object
Code

Mainte-
nance

Opera-
tion

Time in Life-Cycle When Flaw Was Introduced

Fig. 6 -- Example flaws: genesis vs time introduced;
N = number of examples in Appendix

Flaw Genesis

N=6

N=4

N=3

N=2
N=1

N=5

N=6

N=4

N=3

N=2
N=1

N=5

A Taxonomy of Computer Program Security Flaws 17 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

code, specifications, and operational guidance for
security flaws.

All of the cases documented here (except possibly
one) reflect actual flaws in released software or hardware.
For each case, a source (usually with a reference to a
publication) is cited, the software/hardware system in
which the flaw occurred is identified, the flaw and its
effects are briefly described, and the flaw is categorized
according to the taxonomy.

Where it has been difficult to determine with
certainty the time or place a flaw was introduced, the
most probable category (in the judgment of the authors)
has been chosen, and the uncertainty is indicated by the
annotation ‘?’. In some cases, a flaw is not fully
categorized. For example, if the flaw was introduced
during the requirements/specification phase, then the
place in the code where the flaw is located may be
omitted.

The cases are grouped according to the systems
on which they occurred (Unix, which accounts for about
a third of the flaws reported here, is considered a single
system), and the systems are ordered roughly
chronologically. Since readers may not be familiar with
the details of all of the architectures included here, brief
introductory discussions of relevant details are provided
as appropriate.

Table 1 lists the code used to refer to each
specific flaw and the number of the page on which each
flaw is described.

IBM /360 and /370 Systems

In the IBM System /360 and /370 architecture, the
Program Status Word (PSW) defines the key
components of the system state. These include the
current machine state (problem state or supervisor state)
and the current storage key. Two instruction subsets are
defined: the problem state instruction set, which
excludes privileged instructions (loading the PSW,
initiating I/O operations, etc.) and the supervisor state
instruction set, which includes all instructions.
Attempting to execute a privileged operation while in
problem state causes an interrupt. A problem state
program that wishes to invoke a privileged operation
normally does so by issuing the Supervisor Call (SVC)
instruction, which also causes an interrupt.

Main storage is divided into 4K byte pages; each

page has an associated 4-bit storage key. Typically,

user memory pages are assigned storage key 8, while a

system storage page will be assigned a storage key from

0 to 7. A task executing with a nonzero key is permitted

unlimited access to pages with storage keys that match

Table 1. The Codes Used to Refer to Systems

Flaw
Code

System Page
Flaw
Code

System Page
Flaw
Code

System Page

I1 IBM OS/360 18 MU5 Multics 23 U10 Unix 30

I2 IBM VM/370 18 MU6 Multics 23 U11 Unix 30

I3 IBM VM/370 19 MU7 Multics 24 U12 Unix 30

I4 IBM VM/370 19 MU8 Multics 24 U13 Unix 31

I5 IBM MVS 19 MU9 Multics 24 U14 Unix 31

I6 IBM MVS 20 B1 Burroughs 24 D1 DEC VMS 32

I7 IBM MVS 20 UN1 Univac 25 D2 DEC SKVAX 32

I8 IBM 20 DT1 DEC Tenex 26 IN1 Intel 80386/7 32

I9 IBM KVM/370 21 U1 Unix 26 PC1 IBM PC 33

MT1 MTS 21 U2 Unix 27 PC2 IBM PC 33

MT2 MTS 21 U3 Unix 27 PC3 IBM PC 34

MT3 MTS 21 U4 Unix 27 PC4 IBM PC 34

MT4 MTS 22 U5 Unix 28 MA1 Apple Macintosh 34

MU1 Multics 22 U6 Unix 28 MA2 Apple Macintosh 35

MU2 Multics 22 U7 Unix 28 CA1 Commodore Amiga 35

MU3 Multics 23 U8 Unix 29 AT1 Atari 35

MU4 Multics 23 U9 Unix 29

A Taxonomy of Computer Program Security Flaws 18 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

its own. It can also read pages with other storage keys

that are not marked as fetch-protected. An attempt to

write into a page with a nonmatching key causes an

interrupt. A task executing with a storage key of zero is

allowed unrestricted access to all pages, regardless of

their key or fetch-protect status. Most operating system

functions execute with a storage key of zero.

The I/O subsystem includes a variety ofchannels
that are, in effect, separate, special-purpose computers
that can be programmed to perform data transfers
between main storage and auxiliary devices (tapes, disks,
etc.). These channel programs are created dynamically
by device driver programs executed by the CPU. The
channel is started by issuing a special CPU instruction
that provides the channel with an address in main storage
from which to begin fetching its instructions. The
channel then operates in parallel with the CPU and has
independent and unrestricted access to main storage.
Thus, any controls on the portions of main storage that a
channel could read or write must be embedded in the
channel programs themselves. This parallelism, together
with the fact that channel programs are sometimes
(intentionally) self-modifying, provides complexity that
must be carefully controlled if security flaws are to be
avoided.

OS/360 and MVS (Multiple Virtual Storages) are
multiprogramming operating systems developed by IBM
for this hardware architecture. The Time Sharing Option
(TSO) under MVS permits users to submit commands to
MVS from interactive terminals. VM/370 is a virtual
machine monitor operating system for the same
hardware, also developed by IBM. The KVM/370
system was developed by the U.S. Department of
Defense as a high-security version of VM/370. MTS
(Michigan Terminal System), developed by the
University of Michigan, is an operating system designed
especially to support both batch and interactive use of the
same hardware.

MVS supports a category of privileged, non-MVS
programs through its Authorized Program Facility (APF).
APF programs operate with a storage key of 7 or less and
are permitted to invoke operations (such as changing to
supervisor mode) that are prohibited to ordinary user
programs. In effect, APF programs are assumed to be
trustworthy, and they act as extensions to the operating
system. An installation can control which programs are
included under APF. RACF (Resource Access Control
Facility) and Top Secret are security packages designed
to operate as APF programs under MVS.

Case: I1

Source: Andrew S. Tanenbaum,Operating Systems
Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

System: IBM OS/360

Description: In OS/360 systems, the file access
checking mechanism could be subverted. When
a password was required for access to a file, the
filename was read and the user-supplied
password was checked. If it was correct, the file
name was re-read and the file was opened. It was
possible, however, for the user to arrange that the
filename be altered between the first and second
readings. First, the user would initiate a separate
background process to read data from a tape into
the storage location that was also used to store
the filename. The user would then request access
to a file with a known password. The system
would verify the correctness of the password.
While the password was being checked, the tape
process replaced the original filename with a file
for which the user did not have the password,
and this file would be opened. The flaw is that
the user can cause parameters to be altered after
they have been checked (this kind of flaw is
sometimes called a time-of-check-to-time-of-use
(TOCTTOU) flaw). It could probably have been
corrected by copying the parameters into
operating system storage that the user could not
cause to be altered.

Genesis: Inadvertent: Serialization

Time: During development: Requirement/Specification/
Design

Place: Operating System: File Management

Case: I2

Source: C.R. Attanasio, P.W. Markstein, and R.J.
Phillips, ‘‘Penetrating an operating system: a
study of VM/370 integrity,’’ IBM Systems
Journal, 1976, pp. 102-116.

System: IBM VM/370

Description: By carefully exploiting an oversight in
condition-code checking (a retrofit in the basic
VM/370 design) and the fact that CPU and I/O
channel programs could execute simultaneously,
a penetrator could gain control of the system.
Further details of this flaw are not provided in the
cited source, but it appears that a logic error
(‘‘oversight in condition-code checking’’) was at
least partly to blame.

A Taxonomy of Computer Program Security Flaws 19 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Genesis: Inadvertent: Serialization

Time: During development: Requirement/Specification/
Design

Place: Operating System: Device Management

Case: I3

Source: C.R. Attanasio, P.W. Markstein, and R.J.
Phillips, ‘‘Penetrating an operating system: a
study of VM/370 integrity,’’ IBM Systems
Journal, 1976, pp. 102-116.

System: IBM VM/370

Description: As a virtual machine monitor, VM/370 was
required to provide I/O services to operating
systems executing in individual domains under
its management, so that their I/O routines would
operate almost as if they were running on the bare
IBM/370 hardware. Because the OS/360
operating system (specifically, the Indexed
Sequential Access Method (ISAM) routines)
exploited the ability of I/O channel programs to
modify themselves during execution, VM/370
included an arrangement whereby portions of
channel programs were executed from the user’s
virtual machine storage rather than from VM/370
storage. This permitted a penetrator, mimicking
an OS/360 channel program, to modify the
commands in user storage before they were
executed by the channel and thereby to overwrite
arbitrary portions of VM/370.

Genesis: Inadvertent: Domain (?) This flaw might also
be classed as (Intentional, Non-Malicious,
Other), if it is considered to reflect a conscious
compromise between security and both
efficiency in channel program execution and
compatibility with an existing operating system.

Time: During development: Requirement/Specification/
Design

Place: Operating System: Device Management

Case: I4

Source: C.R. Attanasio, P.W. Markstein, and R.J.
Phillips, ‘‘Penetrating an operating system: a
study of VM/370 integrity,’’ IBM Systems
Journal, 1976, pp. 102-116.

System: IBM VM/370

Description: In performing static analysis of a channel
program issued by a client operating system for
the purpose of translating it and issuing it to the
channel, VM/370 assumed that the meaning of a
multi-word channel command remained

constant throughout the execution of the channel
program. In fact, channel commands vary in
length, and the same word might, during
execution of a channel program, act both as a
separate command and as the extension of
another (earlier) command, since a channel
program could contain a backward branch into
the middle of a previous multi-word channel
command. By careful construction of channel
programs to exploit this blind spot in the
analysis, a user could deny service to other users
(e.g., by constructing a nonterminating channel
program), read restricted files, or even gain
complete control of the system.

Genesis: Inadvertent: Validation (?) The flaw seems to
reflect an omission in the channel program
analysis logic. Perhaps additional analysis
techniques could be devised to limit the specific
set of channel commands permitted, but
determining whether an arbitrary channel
program halts or not appears equivalent to
solving the Turing machine halting problem. On
this basis, this could also be argued to be a design
flaw.

Time: During development: Requirement/Specification/
Design

Place: Operating System: Device Management

Case: I5

Source: Walter Opaska, ‘‘A security loophole in the
MVS operating system,’’Computer Fraud and
Security Bulletin, May 1990, Elsevier Science
Publishers, Oxford, pp. 4-5.

System: IBM /370 MVS(TSO)

Description: Time Sharing Option (TSO) is an
interactive development system that runs on top
of MVS. Input/Output operations are only
allowed on allocated files. When files are
allocated (via the TSO ALLOCATE function),
for reasons of data integrity the requesting user
or program gains exclusive use of the file. The
flaw is that a user is allowed to allocate files
whether or not he or she has access to the files. A
user can use the ALLOCATE function on files
such as SMF (System Monitoring Facility)
records, the TSO log-on procedure lists, the
ISPF user profiles, and the production and test
program libraries to deny service to other users.

Genesis: Inadvertent: Validation (?) The flaw
apparently reflects omission of an access
permission check in program logic.

A Taxonomy of Computer Program Security Flaws 20 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Time: During development: Requirement/Specification/
Design (?) Without access to design information,
we cannot be certain whether the postulated
omission occurred in the coding phase or prior to
it.

Place: Operating System: File Management

Case: I6

Source: R. Paans and G. Bonnes, ‘‘Surreptitious security
violation in the MVS operating system,’’ in
Security, IFIP/Sec ’83, V. Fak, ed., North
Holland, 1983, pp. 95-105.

System: IBM MVS(TSO)

Description: Although TSO attempted to prevent users
from issuing commands that would operate
concurrently with each other, it was possible for a
program invoked from TSO to invoke multi-
tasking. Once this was achieved, another TSO
command could be issued to invoke a program
that executed under the Authorized Program
Facility (APF). The concurrent user task could
detect when the APF program began authorized
execution (i.e., with storage key<8). At this point
the entire user’s address space (including both
tasks) was effectively privileged, and the user-
controlled task could issue privileged operations
and subvert the system. The flaw here seems to
be that when one task gained APF privilege, the
other task was able to do so as well—that is, the
domains of the two tasks were insufficiently
separated.

Genesis: Inadvertent: Domain

Time: Development: Requirement/Specification/Design
(?)

Place: Operating System: Process Management

Case: I7

Source: R. Paans and G. Bonnes, ‘‘Surreptitious security
violation in the MVS operating system,’’ in
Security, IFIP/Sec ’83, V. Fak, ed., North
Holland, 1983, pp. 95-105.

System: IBM MVS

Description: Commercial software packages, such as
database management systems, often must be
installed so that they execute under the
Authorized Program Facility. In effect, such
programs operate as extensions of the operating
system, and the operating system permits them to
invoke operations that are forbidden to ordinary
programs. The software package is trusted not to
use these privileges to violate protection

requirements. In some cases, however, (the
referenced source cites as examples the Cullinane
IDMS database system and some routines
supplied by Cambridge Systems Group for
servicing Supervisor Call (SVC) interrupts) the
package may make operations available to its
users that do permit protection to be violated.
This problem is similar to the problem of faulty
Unix programs that run as SUID programs owned
by root (see case U5): there is a class of
privileged programs developed and maintained
separately from the operating system proper that
can subvert operating system protection
mechanisms. It is also similar to the general
problem of permitting ‘‘trusted applications.’’ It
is difficult to point to specific flaws here without
examining some particular APF program in
detail. Among others, the source cites an SVC
provided by a trusted application that permits an
address space to be switched from non-APF to
APF status; subsequently all code executed from
that address space can subvert system protection.
We use this example to characterize this kind of
flaw.

Genesis: Intentional: Non-Malicious: Other (?)
Evidently, the SVC performed this function
intentionally, but not for the purpose of
subverting system protection, even though it had
that effect. Might also be classed as Inadvertent:
Domain.

Time: Development: Requirement/Specification/Design
(?) (During development of the trusted
application)

Place: Support: Privileged Utilities

Case: I8

Source: John Burgess, ‘‘Searching for a better computer
shield,’’ The Washington Post, Nov. 13, 1988, p.
H1.

System: IBM

Description: A disgruntled employee created a number
of programs that each month were intended to
destroy large portions of data and then copy
themselves to other places on the disk. He
triggered one such program after being fired from
his job, and was later convicted of this act.
Although this certainly seems to be an example
of a malicious code introduced into a system, it
is not clear what, if any, technical flaw led to this
violation. It is included here simply to provide
one example of a ‘‘time bomb.’’

Genesis: Intentional: Malicious: Logic/Time Bomb

A Taxonomy of Computer Program Security Flaws 21 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Time: During operation

Place: Application (?)

Case: I9

Source: Schaefer, M., B. Gold, R. Linde, and J. Scheid,
‘‘Program Confinement in KVM/370,’’Proc.
ACM National Conf., Oct., 1977.

System: KVM/370

Description: Because virtual machines shared a
common CPU under a round-robin scheduling
discipline and had access to a time-of-day clock,
it was possible for each virtual machine to detect
at what rate it received service from the CPU.
One virtual machine could signal another by
either relinquishing the CPU immediately or
using its full quantum; if the two virtual
machines operated at different security levels,
information could be passed illicitly in this way.
A straightforward, but costly, way to close this
channel is to have the scheduler wait until the
quantum is expired to dispatch the next process.

Genesis: Intentional: Nonmalicious: Covert timing
channel.

Time: During Development: Requirements/
Specification/Design. This channel occurs
because of a design choice in the scheduler
algorithm.

Place: Operating System: Process Management
(Scheduling)

Case: MT1

Source: B. Hebbard et al., ‘‘A penetration analysis of the
Michigan Terminal System,’’ACM SIGOPS
Operating System Review 14, 1 (Jan. 1980) pp. 7-
20.

System: Michigan Terminal System

Description: A user could trick system subroutines into
changing bits in the system segment that would
turn off all protection checking and gain
complete control over the system. The flaw was
in the parameter checking method used by
(several) system subroutines. These subroutines
retrieved their parameters via indirect
addressing. The subroutine would check that the
(indirect) parameter addresses lay within the
user’s storage area. If not, the call was rejected;
otherwise the subroutine proceeded. However, a
user could defeat this check by constructing a
parameter that pointed into the parameter list
storage area itself. When such a parameter was
used by the system subroutine to store returned

values, the (previously checked) parameters
would be altered, and subsequent use of those
parameters (during the same invocation) could
cause the system to modify areas (such as system
storage) to which the user lacked write
permission. The flaw was exploited by finding
subroutines that could be made to return at least
two controllable values: the first one to modify
the address where the second one would be
stored, and the second one to alter a sensitive
system variable. This is another instance of a
time-of-check-to-time-of-use problem.

Genesis: Inadvertent: Validation

Time: During development: Source Code (?) (Without
access to design information, we can’t be sure
that the parameter checking mechanisms were
adequate as designed)

Place: Operating System: Process Management

Case: MT2

Source: B. Hebbard et al., ‘‘A penetration analysis of the
Michigan Terminal System,’’ACM SIGOPS
Operating System Review 14, 1 (Jan. 1980) pp. 7-
20.

System: Michigan Terminal System

Description: A user could direct the operating system to
place its data (specifically, addresses for its own
subsequent use) in an unprotected location. By
altering those addresses, the user could cause the
system to modify its sensitive variables later so
that the user would gain control of the operating
system.

Genesis: Inadvertent: Domain

Time: During development: Requirement/Specification/
Design

Place: Operating System: Process Management

Case: MT3

Source: B. Hebbard et al., ‘‘A penetration analysis of the
Michigan Terminal System,’’ACM SIGOPS
Operating System Review 14, 1 (Jan. 1980) pp. 7-
20.

System: Michigan Terminal System

Description: Certain sections of memory readable by
anyone contained sensitive information
including passwords and tape identification.
Details of this flaw are not provided in the source
cited; possibly this represents a failure to clear

A Taxonomy of Computer Program Security Flaws 22 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

shared input/output areas before they were re-
used.

Genesis: Inadvertent. Domain (?)

Time: During development: Requirement/Specification/
Design (?)

Place: Operating System: Memory Management
(possibly also Device Management)

Case: MT4

Source: B. Hebbard et al., ‘‘A penetration analysis of the
Michigan Terminal System,’’ACM SIGOPS
Operating System Review 14, 1 (Jan. 1980) pp. 7-
20.

System: Michigan Terminal System

Description: A bug in the MTS supervisor could cause
it to loop indefinitely in response to a ‘‘rare’’
instruction sequence that a user could issue.
Details of the bug are not provided in the source
cited.

Genesis: Inadvertent: Boundary Condition Violation

Time: During development: Source Code (?)

Place: Operating System: Other/Unknown

Multics (GE-645 and successors)

The Multics operating system was developed as
a general-purpose ‘‘information utility’’ and successor
to MIT’s Compatible Time Sharing System (CTSS) as a
supplier of interactive computing services. The initial
hardware for the system was the specially designed
General Electric GE-645 computer. Subsequently,
Honeywell acquired GE’s computing division and
developed the HIS 6180 and its successors to support
Multics. The hardware supported ‘‘master’’ mode, in
which all instructions were legal, and a ‘‘slave’’ mode,
in which certain instructions (such as those that modify
machine registers that control memory mapping) are
prohibited. In addition, the hardware of the HIS 6180
supported eight ‘‘rings’’ of protection (implemented by
software in the GE-645), to permit greater flexibility in
organizing programs according to the privileges they
required. Ring 0 was the most privileged ring, and it was
expected that only operating system code would execute
in ring 0. Multics also included a hierarchical scheme for
files and directories similar to that which has become
familiar to users of the Unix system, but Multics file
structures were integrated with the storage hierarchy, so
that files were essentially the same as segments.
Segments currently in use were recorded in the Active
Segment Table (AST). Denial of service flaws like the
ones listed for Multics below could probably be found

in many current systems.

Case: MU1

Source: Andrew S. Tanenbaum,Operating Systems
Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

System: Multics

Description: Perhaps because it was designed with
interactive use as the primary consideration,
Multics initially permitted batch jobs to read card
decks into the file system without requiring any
user authentication. This made it possible for
anyone to insert a file in any user’s directory
through the batch stream. Since the search path
for locating system commands and utility
programs normally began with the user’s local
directories, a Trojan horse version of (for
example) a text editor could be inserted and
would very likely be executed by the victim, who
would be unaware of the change. Such a Trojan
horse could simply copy the file to be edited (or
change its permissions) before invoking the
standard system text editor.

Genesis: Inadvertent: Inadequate Identification/
Authentication. According to one of the
designers, the initial design actually called for the
virtual card deck to be placed in a protected
directory, and mail would be sent to the recipient
announcing that the file was available for
copying into his or her space. Perhaps the
implementer found this mechanism too complex
and decided to omit the protection. This seems
simply to be an error of omission of
authentication checks for one mode of system
access.

Time: During development: Source Code

Place: Operating System: Identification/Authentication

Case: MU2

Source: Paul A. Karger and R.R. Schell,Multics
Security Evaluation: Vulnerability Analysis,
ESD-TR-74-193, Vol II, June 1974.

System: Multics

Description: When a program executing in a less-
privileged ring passes parameters to one
executing in a more-privileged ring, the more-
privileged program must be sure that its caller
has the required read or write access to the
parameters before it begins to manipulate those
paramenters on the caller’s behalf. Since ring-

A Taxonomy of Computer Program Security Flaws 23 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

crossing was implemented in software in the GE-
645, a routine to perform this kind of argument
validation was required. Unfortunately, this
program failed to anticipate one of the subtleties
of indirect addressing modes available on the
Multics hardware, so the argument validation
routine could be spoofed.

Genesis: Inadvertent: Validation. Failed to check
arguments completely.

Time: During development: Source Code

Place: Operating System: Process Management

Case: MU3

Source: Paul A. Karger and R.R. Schell,Multics
Security Evaluation: Vulnerability Analysis,
ESD-TR-74-193, Vol II, June 1974.

System: Multics

Description: In early designs of Multics, the stack base
(sb) register could only be modified in master
mode. After Multics was released to users, this
restriction was found unacceptable, and changes
were made to allow the sb register to be modified
in other modes. However, code remained in
place that assumed the sb register could only be
changed in master mode. It was possible to
exploit this flaw and insert a trap door. In effect,
the interface between master mode and other
modes was changed, but some code that
depended on that interface was not updated.

Genesis: Inadvertent: Domain. The characterization of
a domain was changed, but code that relied on the
former definition was not modified as needed.

Time: During Maintenance: Source Code

Place: Operating System: Process Management

Case: MU4

Source: Paul A. Karger and R.R. Schell,Multics
Security Evaluation: Vulnerability Analysis,
EST-TR-74-193, Vol II, June 1974.

System: Multics

Description: Originally, Multics designers had planned
that only processes executing in ring 0 would be
permitted to operate in master mode. However,
on the GE-645, code for the signaler module,
which was responsible for processing faults to be
signaled to the user and required master mode
privileges, was permitted to run in the user ring
for reasons of efficiency. When entered, the
signaler checked a parameter, and if the check
failed, it transferred, via a linkage register, to a

routine intended to bring down the system.
However, this transfer was made while executing
in master mode and assumed that the linkage
register had been set properly. Because the
signaler was executing in the user ring, it was
possible for a penetrator to set this register to a
chosen value and then make an (invalid) call to
the signaler. After detecting the invalid call, the
signaler would transfer to the location chosen by
the penetrator while still in master mode,
permitting the penetrator to gain control of the
system.

Genesis: Inadvertent: Validation

Time: During development: Requirement/Specification/
Design

Place: Operating System: Process Management

Case: MU5

Source: Virgil D. Gligor, ‘‘Some thoughts on denial-of-
service problems,’’ University of Maryland,
College Park, MD, 16 Sept. 1982.

System: Multics

Description: A problem with the Active Segment Table
(AST) in Multics version 18.0 caused the system
to crash in certain circumstances. It was required
that whenever a segment was active, all
directories superior to the segment also be active.
If a user created a directory tree deeper than the
AST size, the AST would overflow with
unremovable entries. This would cause the
system to crash.

Genesis: Inadvertent: Boundary Condition Violation:
Resource Exhaustion. Apparently programmers
omitted a check to determine when the AST size
limit was reached.

Time: During development: Source Code

Place: Operating System: Memory Management

Case: MU6

Source: Virgil D. Gligor, ‘‘Some thoughts on denial-of-
service problems,’’ University of Maryland,
College Park, MD, 16 Sept. 1982.

System: Multics

Description: Because Multics originally imposed a
global limit on the total number of login
processes, but no other restriction on an
individual’s use of login processes, it was
possible for a single user to login repeatedly and
thereby block logins by other authorized users.
A simple (although restrictive) solution to this

A Taxonomy of Computer Program Security Flaws 24 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

problem would have been to place a limit on
individual logins as well.

Genesis: Inadvertent: Boundary Condition Violation:
Resource Exhaustion

Time: During development: Requirement/Specification/
Design

Place: Operating System: Process Management

Case: MU7

Source: Virgil D. Gligor, ‘‘Some thoughts on denial-of-
service problems,’’ University of Maryland,
College Park, MD, 16 Sept. 1982.

System: Multics

Description: In early versions of Multics, if a user
generated too much storage in his process
directory, an exception was signaled. The flaw
was that the signaler used the wrong stack,
thereby crashing the system.

Genesis: Inadvertent: Other Exploitable Logic Error

Time: During development: Source Code

Place: Operating System: Process Management

Case: MU8

Source: Virgil D. Gligor, ‘‘Some thoughts on denial-of-
service problems,’’ University of Maryland,
College Park, MD, 16 Sept. 1982.

System: Multics

Description: In early versions of Multics, if a directory
contained an entry for a segment with an all-
blank name, the deletion of that directory would
cause a system crash. The specific flaw that
caused a crash is not known, but, in effect, the
system depended on the user to avoid the use of
all-blank segment names.

Genesis: Inadvertent: Validation

Time: During development: Source Code

Place: Operating System: File Management (in Multics,
segments were equivalent to files)

Case: MU9

Source: Paul A. Karger and R.R. Schell,Multics
Security Evaluation: Vulnerability Analysis,
ESD-TR-74-193, Vol II, June 1974.

System: Multics

Description: A piece of software written to test Multics
hardware protection mechanisms (called the
Subverter by its authors) found a hardware flaw
in the GE-645: if an execute instruction in one

segment had as its target an instruction in
location zero of a different segment, and the
target instruction used index register, butnot
base register modifications, then the target
instruction executed with protection checking
disabled. By judiciously choosing the target
instruction, a user could exploit this flaw to gain
control of the machine. When informed of the
problem, the hardware vendor found that a field
service change to fix another problem in the
machine had inadvertently added this flaw. The
change that introduced the flaw was in fact
installed on all other machines of this type.

Genesis: Inadvertent: Other

Time: During Maintenance: Hardware

Place: Hardware

Burroughs B6700

Burroughs advocated a philosophy in which
users of its systems were expected never to write
assembly language programs, and the architecture of
many Burroughs computers was strongly influenced by
the idea that they would primarily execute programs that
had been compiled (especially ALGOL programs).

Case: B1

Source: A.L. Wilkinson et al., ‘‘A penetration analysis
of a Burroughs large system,’’ACM SIGOPS
Operating Systems Review 15, 1 (Jan. 1981) pp.
14-25.

System: Burroughs B6700

Description: The hardware of the Burroughs B6700
controlled memory access according to bounds
registers that a program could set for itself. A
user who could write programs to set those
registers arbitrarily could effectively gain control
of the machine. To prevent this, the system
implemented a scheme designed to assure that
only object programs generated by authorized
compilers (which would be sure to include code
to set the bounds registers properly) would ever
be executed. This scheme required that every file
in the system have an associated type. The
loader would check the type of each file
submitted to it in order to be sure that it was of
type ‘‘code-file’’, and this type was only
assigned to files produced by authorized
compilers. Thus it would be possible for a user
to create an arbitrary file (e.g., one that contained
malicious object code that reset the bounds
registers and assumed control of the machine),

A Taxonomy of Computer Program Security Flaws 25 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

but unless its type code were also assigned to be
‘‘code-file’’, it still could not be loaded and
executed. Although the normal file-handling
routines prevented this, there were utility
routines that supported writing files to tape and
reading them back into the file system. The flaw
occurred in the routines for manipulating tapes:
it was possible to modify the type label of a file
on tape so that it became ‘‘code-file’’. Once this
was accomplished, the file could be retrieved
from the tape and executed as a valid program.

Genesis
Intentional: Non-Malicious: Other. System
support for tape drives generally requires
functions that permit users to write arbitrary bit-
patterns on tapes. In this system, providing these
functions sabotaged security.

Time: During development: Requirement/Specification/
Design

Place: Support: Privileged Utilities

Univac 1108

This large-scale mainframe provided
timesharing computing resources to many laboratories
and universities in the 1970s. Its main storage was
divided into ‘‘banks’’ of some integral multiple of 512
words in length. Programs normally had two banks: an
instruction (I-) bank and a data (D-) bank. An I-bank
containing a re-entrant program would not be expected
to modify itself; a D-bank would be writable. However,
hardware storage protection was organized so that a
program would either have write permission for both its
I-bank and D-bank or neither.

Case: UN1

Source: D. Stryker, ‘‘Subversion of a ‘‘Secure’’
Operating System,’’ NRL Memorandum Report
2821, June, 1974.

System: Univac 1108/Exec 8

Description: The Exec 8 operating system provided a
mechanism for users to share re-entrant versions
of system utilities, such as editors, compilers, and
database systems, that were outside the
operating system proper. Such routines were
organized as ‘‘Reentrant Processors’’ or REPs.
The user would supply data for the REP in his or
her own D-bank; all current users of a REP
would share a common I-bank for it. Exec 8 also
included an error recovery scheme that permitted
any program to trap errors (i.e., to regain control
when a specified error, such as divide by zero or

an out-of-bounds memory reference, occurs).
When the designated error-handling program
gained control, it would have access to the
context in which the error occurred. On gaining
control, an operating system call (or a
defensively coded REP) would immediately
establish its own context for trapping errors.
However, many REPs did not do this. So, it was
possible for a malicious user to establish an
error-handling context, prepare an out-of-bounds
D-bank for the victim REP, and invoke the REP,
which immediately caused an error. The
malicious code regained control at this point with
both read and write access to both the REP’s I-
and D-banks. It could then alter the REP’s code
(e.g., by adding Trojan horse code to copy a
subsequent user’s files into a place accessible to
the malicious user). This Trojan horse remained
effective as long as the modified copy of the REP
(which is shared by all users) remained in main
storage. Since the REP was supposed to be re-
entrant, the modified version would never be
written back out to a file, and when the storage
occupied by the modified REP was reclaimed, all
evidence of it would vanish. The flaws in this
case are in the failure of the REP to establish its
error handling and in the hardware restriction
that I- and D-banks have the same write-
protection. These flaws were exploitable
because the same copy of the REP was shared by
all users. A fix was available that relaxed the
hardware restriction.

Genesis: Inadvertent: Domain. It was possible for the
user’s error-handler to gain access to the REP’s
domain.

Time: During development: Requirements/
Specification/Design

Place: Operating System: Process Management.
(Alternatively, this could be viewed as a
hardware design flaw.)

DEC PDP-10

The DEC PDP-10 was a medium-scale computer
that became the standard supplier of interactive
computing facilities for many research laboratories in
the 1970s. DEC offered the TOPS-10 operating system
for it; the TENEX operating system was developed by
Bolt, Beranek, and Newman, Inc. (BBN), to operate in
conjunction with a paging box and minor modifications
to the PDP-10 processor also developed by BBN.

A Taxonomy of Computer Program Security Flaws 26 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Case: DT1

Source: Andrew S. Tanenbaum,Operating Systems
Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987, and R.P. Abbott et
al, ‘‘Security Analysis and Enhancements of
Computer Operating Systems, Final Report of
the RISOS Project,’’ National Bureau of
Standards NBSIR-76-1041, April, 1976 (NTIS
PB-257 087), pp. 49-50.

System: TENEX

Description: In TENEX systems, passwords were used
to control access to files. By exploiting details
of the storage allocation mechanisms and the
password-checking algorithm, it was possible to
guess the password for a given file. The
operating system checked passwords character-
by-character, stopping as soon as an incorrect
character was encountered. Furthermore, it
retrieved the characters to be checked
sequentially from storage locations chosen by the
user. To guess a password, the user placed a trial
password in memory so that the first unknown
character of the password occupied the final byte
of a page of virtual storage resident in main
memory, and the following page of virtual
storage was not currently in main memory. In
response to an attempt to gain access to the file in
question, the operating system would check the
password supplied. If the character before the
page boundary was incorrect, password checking
was terminated before the following page was
referenced, and no page fault occurred. But if the
character just before the page boundary was
correct, the system would attempt to retrieve the
next character and a page fault would occur. By
checking a system-provided count of the number
of page faults this process had incurred just
before and again just after the password check,
the user could deduce whether or not a page fault
had occurred during the check, and, hence,
whether or not the guess for the next character of
the password was correct. This technique
effectively reduces the search space for anN-
character password over an alphabet of size m
from $N sup m$ to Nm. The flaw was that the
password was checked character-by-character
from the user’s storage. Its exploitation required
that the user also be able to position a string in a
known location with respect to a physical page
boundary and that a program be able to determine
(or discover) which pages are currently in
memory.

Genesis: Intentional: Non-Malicious: Covert Storage
Channel (could also be classed as Inadvertent:
Domain: Exposed Representation)

Time: During development: Source Code

Place: Operating System: Identification/Authentication

Unix

The Unix operating system was originally
developed at Bell Laboratories as a ‘‘single user
Multics’’ to run on DEC minicomputers (PDP-8 and
successors). Because of its original goals—to provide
useful, small-scale, interactive computing to a single
user in a cooperative laboratory environment—security
was not a strong concern in its initial design. Unix
includes a hierarchical file system with access controls,
including a designated owner for each file, but for a user
with userID ‘‘root’’ (also known as the ‘‘superuser’’),
access controls are turned off. Unix also supports a
feature known as ‘‘setUID’’ or ‘‘SUID’’. If the file from
which a program is loaded for execution is marked
‘‘setUID’’, then it will execute with the privileges of the
owner of that file, rather than the privileges of the user
who invoked the program. Thus a program stored in a
file that is owned by ‘‘root’’ and marked ‘‘setUID’’ is
highly privileged (such programs are often referred to as
being ‘‘setUID to root’’). Several of the flaws reported
below occurred because programs that were ‘‘setUID to
root’’ failed to include sufficient internal controls to
prevent themselves from being exploited by a pene
trator. This is not to say that the setUID feature is only
of concern when ‘‘root’’ owns the file in question: any
user can cause the setUID bit to be set on files he or she
creates. A user who permits others to execute the
programs in such a file without exercising due caution
may have an unpleasant surprise.

Case: U1

Source: K. Thompson, ‘‘Reflections on trusting trust,’’
Comm ACM 27, 8 (August, 1984), pp. 761-763.

System: Unix

Description: Ken Thompson’s ACM Turing Award
Lecture describes a procedure that uses a virus to
install a trapdoor in the Unix login program. The
virus is placed in the C compiler and performs
two tasks. If it detects that it is compiling a new
version of the C compiler, the virus incorporates
itself into the object version of the new C
compiler. This ensures that the virus propagates
to new versions of the C compiler. If the virus
determines it is compiling the login program, it

A Taxonomy of Computer Program Security Flaws 27 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

adds a trapdoor to the object version of the login
program. The object version of the login
program then contains a trapdoor that allows a
specified password to work for a specific
account. Whether this virus was ever actually
installed as described has not been revealed. We
classify this according to the virus in the
compiler; the trapdoor could be counted
separately.

Genesis: Intentional: Replicating Trojan horse (virus)

Time: During Development: Object Code

Place: Support: Unprivileged Utilities (compiler)

Case: U2

Source: Andrew S. Tanenbaum,Operating Systems
Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

System: Unix

Description: The ‘‘lpr’’ program is a Unix utility that
enters a file to be printed into the appropriate
print queue. The -r option to lpr causes the file
to be removed once it has been entered into the
print queue. In early versions of Unix, the -r
option did not adequately check that the user
invoking lpr -r had the required permissions to
remove the specified file, so it was possible for a
user to remove, for instance, the password file
and prevent anyone from logging into the system.

Genesis: Inadvertent: Identification and Authentication.
Apparently, lpr was a SetUID (SUID) program
owned by root (i.e., it executed without access
controls) and so was permitted to delete any file
in the system. A missing or improper access
check probably led to this flaw.

Time: During development: Source Code

Place: Operating System: File Management

Case: U3

Source: Andrew S. Tanenbaum,Operating Systems
Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

System: Unix

Description: In some versions of Unix, ‘‘mkdir’’ was an
SUID program owned by root. The creation of a
directory required two steps. First, the storage
for the directory was allocated with the
‘‘mknod’’ system call. The directory created
would be owned by root. The second step of
‘‘mkdir’’ was to change the owner of the newly

created directory from ‘‘root’’ to the ID of the
user who invoked ‘‘mkdir.’’ Because these two
steps were not atomic, it was possible for a user
to gain ownership of any file in the system,
including the password file. This could be done
as follows: the ‘‘mkdir’’ command would be
initiated, perhaps as a background process, and
would complete the first step, creating the
directory, before being suspended. Through
another process, the user would then remove the
newly created directory before the suspended
process could issue the ‘‘chown’’ command and
would create a link to the system password file
with the same name as the directory just deleted.
At this time the original ‘‘mkdir’’ process would
resume execution and complete the ‘‘mkdir’’
invocation by issuing the ‘‘chown’’ command.
However, this command would now have the
effect of changing the owner of the password file
to be the user who had invoked ‘‘mkdir.’’ As the
owner of the password file, that user could now
remove the password for root and gain superuser
status.

Genesis: Intentional: Nonmalicious: other. (Might also
be classified as Inadvertent: Serialization.) The
developer probably realized the need for (and
lack of) atomicity in mkdir, but could not find a
way to provide this in the version of Unix with
which he or she was working. Later versions of
Unix (Berkeley Unix) introduced a system call to
achieve this.

Time: During development: Source Code

Place: Operating System: File Management. The flaw
is really the lack of a needed facility at the system
call interface.

Case: U4

Source: A.V. Discolo, ‘‘4.2 BSD Unix security,’’
Computer Science Department, University of
California - Santa Barbara, April 26, 1985.

System: Unix

Description: By using the Unix command ‘‘sendmail’’,
it was possible to display any file in the system.
Sendmail has a -C option that allows the user to
specify the configuration file to be used. If lines
in the file did not match the required syntax for
a configuration file, sendmail displayed the
offending lines. Apparently sendmail did not
check to see if the user had permission to read
the file in question, so to view a file for which he
or she did not have permission (unless it had the
proper syntax for a configuration file), a user

A Taxonomy of Computer Program Security Flaws 28 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

could give simply the command ‘‘sendmail -
Cfile_name’’.

Genesis: Inadvertent: Identification and Authentication.
The probable cause of this flaw is a missing
access check, in combination with the fact that
the sendmail program was an SUID program
owned by root, and so was allowed to bypass all
access checks.

Time: During development: Source Code

Place: Support: Privileged Utilities

Case: U5

Source: M. Bishop, ‘‘Security problems with the UNIX
operating system,’’ Computer Science Dept.,
Purdue University, West Lafayette, Indiana,
March 31, 1982.

System: Unix

Description: Improper use of an SUID program and
improper setting of permissions on the mail
directory led to this flaw, which permitted a user
to gain full system privileges. In some versions
of Unix, the mail program changed the owner of
a mail file to be the recipient of the mail. The
flaw was that the mail program did not remove
any pre-existing SUID permissions that file had
when it changed the owner. Many systems were
set up so that the mail directory was writable by
all users. Consequently, it was possible for a user
X to remove any other user’s mail file. The user
X wishing superuser privileges would remove
the mail file belonging to root and replace it with
a file containing a copy of /bin/csh (the command
interpreter or shell). This file would be owned by
X, who would then change permissions on the
file to make it SUID and executable by all users.
X would then send a mail message to root.
When the mail message was received, the mail
program would place it at the end of root’s
current mail file (now containing a copy of /bin/
csh and owned by X) and then change the owner
of root’s mail file to be root (via Unix command
‘‘chown’’). The change owner command did
not, however, alter the permissions of the file, so
there now existed an SUID program owned by
root that could be executed by any user. User X
would then invoke the SUID program in root’s
mail file and have all the privileges of superuser.

Genesis: Inadvertent: Identification and Authentication.
This flaw is placed here because the programmer
failed to check the permissions on the file in
relation to the requester’s identity. Other flaws
contribute to this one: having the mail directory

writeable by all users is in itself a questionable
approach. Blame could also be placed on the
developer of the ‘‘chown’’ function. It would
seem that it is never a good idea to allow an SUID
program to have its owner changed, and when
‘‘chown’’ is applied to an SUID program, many
Unix systems now automatically remove all the
SUID permissions from the file.

Time: During development: Source Code

Place: Operating System: System Initialization

Case: U6

Source: M. Bishop, ‘‘Security problems with the UNIX
operating system,’’ Computer Science Dept.,
Purdue University, West Lafayette, Indiana,
March 31, 1982.

System: Unix (Version 6)

Description: The ‘‘su’’ command in Unix permits a
logged-in user to change his or her userID,
provided the user can authenticate himself by
entering the password for the new userID. In
Version 6 Unix, however, if the ‘‘su’’ program
could not open the password file it would create
a shell with real and effective UID and GID set
to those of root, providing the caller with full
system privileges. Since Unix also limits the
number of files an individual user can have open
at one time, ‘‘su’’ could be prevented from
opening the password file by running a program
that opened files until the user’s limit was
reached. By invoking ‘‘su’’ at this point, the user
gained root privileges.

Genesis: Intentional: Nonmalicious: Other. The
designers of ‘‘su’’ may have considered that if
the system were in a state where the password file
could not be opened, the best option would be to
initiate a highly privileged shell to allow the
problem to be fixed. A check of default actions
might have uncovered this flaw. When a system
fails, it should default to a secure state.

Time: During development: Design

Place: Operating System: Identification/Authentication

Case: U7

Source: M. Bishop, ‘‘Security problems with the UNIX
operating system,’’ Computer Science Dept.,
Purdue University, West Lafayette, Indiana,
March 31, 1982.

System: Unix

A Taxonomy of Computer Program Security Flaws 29 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Description: Uux is a Unix support software program
that permits the remote execution of a limited set
of Unix programs. The command line to be
executed is received by the uux program at the
remote system, parsed, checked to see if the
commands in the line are in the set uux is
permitted to execute, and if so, a new process is
spawned (with userID uucp) to execute the
commands. Flaws in the parsing of the command
line, however, permitted unchecked commands
to be executed. Uux effectively read the first
word of a command line, checked it, and skipped
characters in the input line until a ‘‘;’’, ‘‘^’’, or a
‘‘|’’ was encountered, signifying the end of this
command. The first word following the delimiter
would then be read and checked, and the process
would continue in this way until the end of the
command line was reached. Unfortunately, the
set of delimiters was incomplete (‘‘&’’ and ‘‘‘’’
were omitted), so a command following one of
the ignored delimiters would never be checked
for legality. This flaw permitted a user to invoke
arbitrary commands on a remote system (as user
uucp). For example, the command

uux ‘‘remote_computer!rmail rest_of_command &
command2’’

would execute two commands on the remote system, but
only the first (rmail) would be checked for
legality.

Genesis: Inadvertent: Validation. This flaw seems
simply to be an error in the implementation of
‘‘uux’’, although it might be argued that the lack
of a standard command line parser in Unix, or the
lack of a standard, shared set of command
termination delimiters (to which ‘‘uux’’ could
have referred) contributed to the flaw.

Time: During development: Requirement/Specification/
Design (?) Determining whether this was a
specification flaw or a flaw in programming is
difficult without examination of the
specification (if a specification ever existed) or
an interview with the programmer.

Place: Support: Privileged Utilities

Case: U8

Source: M. Bishop, ‘‘Security problems with the UNIX
operating system,’’ Computer Science Dept.,
Purdue University, West Lafayette, Indiana,
March 31, 1982.

System: Unix

Description: On many Unix systems it is possible to
forge mail. Issuing the following command:
mail user1 <message_file >device_of_user2

creates a message addressed to user1 with contents taken
from message_file but with a FROM field
containing the login name of the owner of
device_of_user2, so user1 will receive a message
that is apparently from user2. This flaw is in the
code implementing the ‘‘mail’’ program. It uses
the Unix ‘‘getlogin’’ system call to determine the
sender of the mail message, but in this situation,
‘‘getlogin’’ returns the login name associated
with the current standard output device
(redefined by this command to be
device_of_user2) rather than the login name of
the user who invoked the ‘‘mail’’. Although this
flaw does not permit a user to violate access
controls or gain system privileges, it is a
significant security problem if one wishes to rely
on the authenticity of Unix mail messages.
[Even with this flaw repaired, however, it would
be foolhardy to place great trust in the ‘‘from’’
field of an e-mail message, since the Simple Mail
Transfer Protocol (SMTP) used to transmit e-
mail on the Internet was never intended to be
secure against spoofing.]

Genesis: Inadvertent: Other Exploitable Logic Error.
This flaw apparently resulted from an incomplete
understanding of the interface provided by the
‘‘getlogin’’ function. While ‘‘getlogin’’
functions correctly, the values it provides do not
represent the information desired by the caller.

Time: During development: Source Code

Place: Support: Privileged Utilities

Case: U9

Source: Unix Programmer’s Manual, Seventh Edition,
Vol. 2B, Bell Telephone Laboratories, 1979.

System: Unix

Description: There are resource exhaustion flaws in
many parts of Unix that make it possible for one
user to deny service to all others. For example,
creating a file in Unix requires the creation of an
‘‘i-node’’ in the system i-node table. It is
straightforward to compose a script that puts the
system into a loop creating new files, eventually
filling the i-node table, and thereby making it
impossible for any other user to create files.

A Taxonomy of Computer Program Security Flaws 30 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Genesis: Inadvertent: Boundary Condition Violation:
Resource Exhaustion (or Intentional:
Nonmalicious: Other). This flaw can be
attributed to the design philosophy used to
develop the Unix system, namely, that its users
are benign—they will respect each other and not
abuse the system. The lack of resource quotas
was a deliberate choice, and so Unix is relatively
free of constraints on how users consume
resources: a user may create as many directories,
files, or other objects as needed. This design
decision is the correct one for many
environments, but it leaves the system open to
abuse where the original assumption does not
hold. It is possible to place some restrictions on a
user, for example by limiting the amount of
storage he or she may use, but this is rarely done
in practice.

Time: During development: Requirement/Specification/
Design

Place: Operating System: File Management

Case: U10

Source: E. H. Spafford, ‘‘Crisis and Aftermath,’’
Comm. ACM 32, 6 (June 1989), pp. 678-687.

System: Unix

Description: In many Unix systems the sendmail
program was distributed with the debug option
enabled, allowing unauthorized users to gain
access to the system. A user who opened a
connection to the system’s sendmail port and
invoked the debug option could send messages
addressed to a set of commands instead of to a
user’s mailbox. A judiciously constructed
message addressed in this way could cause
commands to be executed on the remote system
on behalf of an unauthenticated user; ultimately,
a Unix shell could be created, circumventing
normal login procedures.

Genesis: Intentional: Non-Malicious: Other (? —
Malicious, Trapdoor if intentionally left in
distribution). This feature was deliberately
inserted in the code, presumably as a debugging
aid. When it appeared in distributions of the
system intended for operational use, it provided a
trapdoor. There is some evidence that it
reappeared in operational versions after having
been noticed and removed at least once.

Time: During development: Requirement/Specification/
Design

Place: Support: Privileged Utilities

Case: U11

Source: D. Gwyn, UNIX-WIZARDS Digest, Vol. 6, No.
15, Nov. 10, 1988.

System: Unix

Description: The Unixchfn function permits a user to
change the full name associated with his or her
userID. This information is kept in the password
file, so a change in a user’s full name entails
writing that file. Apparently,chfn failed to
check the length of the input buffer it received,
and merely attempted to re-write it to the
appropriate place in the password file. If the
buffer was too long, the write to the password file
would fail in such a way that a blank line would
be inserted in the password file. This line would
subsequently be replaced by a line containing
only ‘‘::0:0:::’’, which corresponds to a null-
named account with no password and root
privileges. A penetrator could then log in with a
null userID and password and gain root
privileges.

Genesis: Inadvertent: Validation

Time: During development: Source Code

Place: Operating System: Identification/Authentication.
From one view, this was a flaw in thechfn routine
that ultimately permitted an unauthorized user to
log in. However, the flaw might also be
considered to be in the routine that altered the
blank line in the password file to one that
appeared valid to the login routine. At the
highest level, perhaps the flaw is in the lack of a
specification that prohibits blank userIDs and
null passwords, or in the lack of a proper abstract
interface for modifying /etc/passwd.

Case: U12

Source: J. A. Rochlis and M. W. Eichin, ‘‘With
microscope and tweezers: the worm from MIT’s
perspective,’’ Comm. ACM 32, 6 (June 1989),
pp. 689-699.

System: Unix (4.3BSD on VAX)

Description: The ‘‘fingerd’’ daemon in Unix accepts
requests for user information from remote
systems. A flaw in this program permitted users
to execute code on remote machines, bypassing
normal access checking. When fingerd read an

A Taxonomy of Computer Program Security Flaws 31 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

input line, it failed to check whether the record
returned had overrun the end of the input buffer.
Since the input buffer was predictably allocated
just prior to the stack frame that held the return
address for the calling routine, an input line for
fingerd could be constructed so that it overwrote
the system stack, permitting the attacker to create
a new Unix shell and have it execute commands
on his or her behalf. This case represents a (mis-
)use of the Unix ‘‘gets’’ function.

Genesis: Inadvertent: Validation.

Time: During development (Source Code)

Place: Support: Privileged Utilities

Case: U13

Source: S. Robertson, Security Distribution List, Vol. 1,
No. 14, June 22, 1989.

System: Unix

Description: Rwall is a Unix network utility that allows
a user to send a message to all users on a remote
system. /etc/utmp is a file that contains a list of
all currently logged in users. Rwall uses the
information in /etc/utmp on the remote system to
determine the users to which the message will be
sent, and the proper functioning of some Unix
systems requires that all users be permitted to
write the file /etc/utmp. In this case, a malicious
user can edit the /etc/utmp file on the target
system to contain the entry:

../etc/passwd
The user then creates a password file that is to
replace the current password file (e.g., so that his
or her account will have system privileges). The
last step is to issue the command:

rwall hostname < newpasswordfile
The rwall daemon (having root privileges) next
reads /etc/utmp to determine which users should
receive the message. Since /etc/utmp contains an
entry ../etc/passwd, rwalld writes the message
(the new password file) to that file as well,
overwriting the previous version.

Genesis: Inadvertent: Validation

Time: During development: Requirement/Specification/
Design. The flaw occurs because users are
allowed to alter a file on which a privileged
program relied.

Place: Operating System: System Initialization. This
flaw is considered to be in system initialization
because proper setting of permissions on /etc/
utmp at system initialization can eliminate the
problem.

Case: U14

Source: J. Purtilo,RISKS-FORUM Digest, Vol. 7, No. 2,
June, 2, 1988.

System: Unix (SunOS)

Description: The programrpc.rexd is a daemon that
accepts requests from remote workstations to
execute programs. The flaw occurs in the
authentication section of this program, which
appears to base its decision on userID (UID)
alone. When a request is received, the daemon
determines if the request originated from a
superuser UID. If so, the request is rejected.
Otherwise, the UID is checked to see whether it
is valid on this workstation. If it is, the request is
processed with the permissions of that
UID. However, if a user has root access to any
machine in the network, it is possible for him to
create requests that have any arbitrary UID. For
example, if a user on computer 1 has a UID of 20,
the impersonator on computer 2 becomes root
and generates a request with a UID of 20 and
sends it to computer 1. When computer 1
receives the request it determines that it is a valid
UID and executes the request. The designers
seem to have assumed that if a (locally) valid
UID accompanies a request, the request came
from an authorized user. A stronger
authentication scheme would require the user to
supply some additional information, such as a
password. Alternatively, the scheme could
exploit the Unix concept of ‘‘trusted host.’’ If
the host issuing a request is in a list of trusted
hosts (maintained by the receiver) then the
request would be honored; otherwise it would be
rejected.

Genesis: Inadvertent: Identification and Authentication

Time: During development: Requirement/Specification/
Design

Place: Support: Privileged Utilities

DEC VAX Computers

DEC’s VAX series of computers can be operated
with the VMS operating system or with a UNIX-like
system called ULTRIX; both are DEC products. VMS
has a system authorization file that records the privileges
associated with a userID. A user who can alter this file
arbitrarily effectively controls the system. DEC also
developed SKVAX, a high-security operating system for
the VAX based on the virtual machine monitor
approach. Although the results of this effort were never
marketed, two hardware-based covert timing channels

A Taxonomy of Computer Program Security Flaws 32 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

discovered in the course of its development it have been
documented clearly in the literature and are included
below.

Case: D1

Source: ‘‘VMS code patch eliminates security breach,’’
Digital Review, June 1, 1987, p. 3

System: DEC VMS

Description: This flaw is of particular interest because
the system in which it occurred was a new release
of a system that had previously been closely
scrutinized for security flaws. The new release
added system calls that were intended to permit
authorized users to modify the system
authorization file. To determine whether the
caller has permission to modify the system
authorization file, that file must itself be
consulted. Consequently, when one of these
system calls was invoked, it would open the
system authorization file and determine whether
the user was authorized to perform the requested
operation. If the user was not authorized to
perform the requested operation, the call would
return with an error message. The flaw was that
when certain second parameters were provided
with the system call, the error message was
returned, but the system authorization file was
inadvertently left open. It was then possible for
a knowledgeable (but unauthorized) user to alter
the system authorization file and eventually gain
control of the entire machine.

Genesis: Inadvertent: Domain: Residuals. In the case
described, the access to the authorization file
represents a residual.

Time: During Maintenance: Source Code

Place: Operating System: Identification/Authentication

Case: D2

Source: W-M, Hu, ‘‘Reducing Timing Channels with
Fuzzy Time,’’ Proc. 1991 IEEE Computer
Society Symposium on Research in Security and
Privacy, Oakland, CA, 1991, pp. 8-20.

System: SKVAX

Description: When several CPUs share a common bus,
bus demands from one CPU can block those of
others. If each CPU also has access to a clock of
any kind, it can detect whether its requests have
been delayed or immediately satisfied. In the
case of the SKVAX, this interference permitted a
process executing on a virtual machine at one
security level to send information to a process

executing on a different virtual machine,
potentially executing at a lower security level.
The cited source describes a technique developed
and applied to limit this kind of channel.

Genesis: Intentional: Nonmalicious: Covert timing
channel

Time: During development: Requirement/Specification/
Design. This flaw arises because of a hardware
design decision.

Place: Hardware

Intel 80386/80387 Processor/CoProcessor Set

Case: IN1

Source: ‘‘EE’s tools & toys,’’IEEE Spectrum, 25, 8
(Aug. 1988), pp. 42.

System: All systems using Intel 80386 processor and
80387 coprocessor.

Description: It was reported that systems using the
80386 processor and 80387 coprocessor may halt
if the 80387 coprocessor sends a certain signal to
the 80386 processor when the 80386 processor is
in paging mode. This seems to be a hardware or
firmware flaw that can cause denial of service.
The cited reference does not provide details as to
how the flaw could be evoked from software. It
is included here simply as an example of a
hardware flaw in a widely marketed commercial
system.

Genesis: Inadvertent: Other Exploitable Logic Error(?)

Time: During development: Requirement/Specification/
Design (?)

Place: Hardware

Personal Computers: IBM PCs and
Compatibles, Apple Macintosh, Amiga, and
Atari

This class of computers poses an interesting
classification problem: can a computer be said to have a
security flaw if it has no security policy? Most personal
computers, as delivered, do not restrict (or even identify)
the individuals who use them. Therefore, there is no way
to distinguish an authorized user from an unauthorized
one or to discriminate an authorized access request by a
program from an unauthorized one. In some respects, a
personal computer that is always used by the same
individual is like a single user’s domain within a
conventional time-shared interactive system: within
that domain, the user may invoke programs as desired.
Each program a user invokes can use the full privileges

A Taxonomy of Computer Program Security Flaws 33 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

of that user to read, modify, or delete data within that
domain.

Nevertheless, it seems to us that even if personal
computers don’t have explicit security policies, they do
have implicit ones. Users normally expect certain
properties of their machines—for example, that running
a new piece of commercially produced software should
not cause all of one’s files to be deleted.

For this reason, we include a few examples of
viruses and Trojan horses that exploit the weaknesses of
IBM PCs, their non-IBM equivalents, Apple
Macintoshes, Atari computers, and Commodore Amiga.
The fundamental flaw in all of these systems is the fact
that the operating system, application packages, and
user-provided software user programs inhabit the same
protection domain and therefore have the same
privileges and information available to them. Thus, if a
user-written program goes astray, either accidentally or
maliciously, it may not be possible for the operating
system to protect itself or other programs and data in the
system from the consequences. Effective attempts to
remedy this situation generally require hardware
modifications, and some such modifications have been
marketed. In addition, software packages capable of
detecting the presence of certain kinds of malicious
software are marketed as ‘‘virus detection/prevention’’
mechanisms. Such software can never provide complete
protection in such an environment, but it can be effective
against some specific threats.

The fact that PCs normally provide only a single
protection domain (so that all instructions are available
to all programs) is probably attributable to the lack of
hardware support for multiple domains in early PCs, to
the culture that led to the production of PCs, and to the
environments in which they were intended to be used.
Today, the processors of many, if not most, PCs could
support multiple domains, but frequently the software
(perhaps for reasons of compatibility with older
versions) doesn’t exploit the hardware mechanisms that
are available.

When powered up, a typical PC (e.g., running
MS-DOS) loads (‘‘boots’’) its operating system from
pre-defined sectors on a disk (either floppy or hard). In
many of the cases listed below, the malicious code
strives to alter these boot sectors so that it is
automatically activated each time the system is re-
booted; this gives it the opportunity to survey the status
of the system and decide whether or not to execute a
particular malicious act. A typical malicious act that
such code could execute would be to destroy a file
allocation table, which will delete the filenames and
pointers to the data they contained (although the data in

the files may actually remain intact). Alternatively, the
code might initiate an operation to reformat a disk; in
this case, not only the file structures, but also the data,
are likely to be lost.

MS-DOS files have two-part names: a filename
(usually limited to eight characters) and an extension
(limited to three characters), which is normally used to
indicate the type of the file. For example, files
containing executable code typically have names like
‘‘MYPROG.EXE’’. The basic MS-DOS command
interpreter is normally kept in a file named
COMMAND.COM. A Trojan horse may try to install
itself in this file or in files that contain executables for
common MS-DOS commands, since it may then be
invoked by an unwary user. (See case MU1 for an related
attack on Multics).

Readers should understand that it is very difficult
to be certain of the complete behavior of malicious code.
In most of the cases listed below, the author of the
malicious code has not been identified, and the nature of
that code has been determined by others who have (for
example) read the object code or attempted to
‘‘disassemble’’ it. Thus the accuracy and completeness
of these descriptions cannot be guaranteed.

IBM PCs and Compatibles

Case: PC1

Source: D. Richardson,RISKS FORUM Digest, Vol. 4,
No. 48, 18 Feb. 1987.

System: IBM PC or compatible

Description: A modified version of a word-processing
program (PC-WRITE, version 2.71) was found
to contain a Trojan horse after having been
circulated to a number of users. The modified
version contained a Trojan horse that both
destroyed the file allocation table of a user’s hard
disk and initiated a low-level format, destroying
the data on the hard disk.

Genesis: Malicious: Non-Replicating Trojan horse

Time: During operation

Place: Support: Privileged Utilities

Case: PC2

Source: E. J. Joyce, ‘‘Software viruses: PC-health
enemy number one,’’Datamation, Cahners
Publishing Co., Newton, MA, 15 Oct. 1988, pp.
27-30.

System: IBM PC or compatible

Description: This virus places itself in the stack space of
the file COMMAND.COM. If an infected disk is

A Taxonomy of Computer Program Security Flaws 34 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

booted, and then a command such as TYPE,
COPY, DIR, etc., is issued, the virus will gain
control. It checks to see if the other disk contains
a COMMAND.COM file, and if so, it copies
itself to it and a counter on the infected disk is
incremented. When the counter equals four
every disk in the PC is erased. The boot tracks
and the File Access Tables are nulled.

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation.

Place: Operating System: System Initialization

Case: PC3

Source: D. Malpass,RISKS FORUM Digest, Vol. 1, No.
2, 28 Aug., 1985.

System: IBM-PC or compatible

Description: This Trojan horse program was described
as a program to enhance the graphics of IBM
programs. In fact, it destroyed data on the user’s
disks and then printed the message ‘‘Arf! Arf!
Got You!’’.

Genesis: Malicious: Nonreplicating Trojan horse

Time: During operation

Place: Support: Privileged Utilities (?)

Case: PC4

Source: Y.Radai,Info-IBM PC Digest, Vol. 7, No. 8, 8
Feb., 1988, alsoACM SIGSOFT Software
Engineering Notes, 13, 2 (Apr. 1988), pp.13-14

System: IBM-PC or compatible

Description: The so-called ‘‘Israeli’’ virus, infects both
COM and EXE files. When an infected file is
executed for the first time, the virus inserts its
code into memory so that when interrupt 21h
occurs the virus will be activated. Upon
activation, the virus checks the currently running
COM or EXE file. If the file has not been
infected, the virus copies itself into the currently
running program. Once the virus is in memory it
does one of two things: it may slow down
execution of the programs on the system or, if the
date it obtains from the system is Friday the 13th,
it is supposed to delete any COM or EXE file that
is executed on that date.

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation

Place: Operating System: System Initialization

Apple Macintosh

An Apple Macintosh application presents quite a
different user interface from from that of a typical MS-
DOS application on a PC, but the Macintosh and its
operating system share the primary vulnerabilities of a
PC running MS-DOS. Every Macintosh file has two
‘‘forks’’: a data fork and a resource fork, although this
fact is invisible to most users. Each resource fork has a
type (in effect, a name) and an identification number. An
application that occupies a given file can store auxiliary
information, such as the icon associated with the file,
menus it uses, error messages it generates, etc., in
resources of appropriate types within the resource fork of
the application file. The object code for the application
itself will reside in resources within the file’s resource
fork. The Macintosh operating system provides utility
routines that permit programs to create, remove, or
modify resources. Thus any program that runs on the
Macintosh is capable of creating new resources and
applications or altering existing ones, just as a program
running under MS-DOS can create, remove, or alter
existing files. When a Macintosh is powered up or
rebooted, its initialization may differ from MS-DOS
initialization in detail, but not in kind, and the Macintosh
is vulnerable to malicious modifications of the routines
called during initialization.

Case: MA1

Source: B. R. Tizes, ‘‘Beware the Trojan bearing gifts,’’
MacGuide Magazine 1, (1988) Denver, CO, pp.
110-114.

System: Macintosh

Description: NEWAPP.STK, a Macintosh program
posted on a commercial bulletin board, was
found to include a virus. The program modifies
the System program located on the disk to
include an INIT called ‘‘DR.’’ If another system
is booted with the infected disk, the new system
will also be infected. The virus is activated when
the date of the system is March 2, 1988. On that
date the virus will print out the the following
message:
‘‘RICHARD BRANDOW, publisher of
MacMag, and its entire staff would like to take
this opportunity to convey their UNIVERSAL
MESSAGE OF PEACE to all Macintosh users
around the world.’’

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation

Place: Operating System: System Initialization

A Taxonomy of Computer Program Security Flaws 35 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

Case: MA2

Source: S. Stefanac, ‘‘Mad Macs,’’Macworld 5, 11
(Nov. 1988), PCW Communications, San
Francisco, CA, pp. 93-101.

System: Macintosh

Description: The Macintosh virus, commonly called
‘‘scores’’, seems to attack application programs
with VULT or ERIC resources. Once infected,
the scores virus stays dormant for several days
and then begins to affect programs with VULT
or ERIC resources, causing attempts to write to
the disk to fail. Signs of infection by this virus
include an extra CODE resource of size 7026,
the existence of two invisible files titled Desktop
and Scores in the system folder, and added
resources in the Note Pad file and Scrapbook file.

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation

Place: Operating System: System Initialization (?)

Commodore Amiga

Case: CA1

Source: B. Koester,RISKS FORUM Digest, Vol. 5, No.
71, 7 Dec. 1987; alsoACM SIGSOFT Software
Engineering Notes, 13, 1 (Jan. 1988), pp. 11-12.

System: Amiga personal computer

Description: This Amiga virus uses the boot block to
propagate itself. When the Amiga is first booted
from an infected disk, the virus is copied into
memory. The virus initiates the warm start
routine. Instead of performing the normal warm
start, the virus code is activated. When a warm
start occurs, the virus code checks to determine if
the disk in drive 0 is infected. If not, the virus
copies itself into the boot block of that disk. If a
certain number of disks have been infected, a
message is printed revealing the infection;
otherwise the normal warm start occurs.

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation

Place: Operating System: System Initialization

Atari

Case: AT1

Source: J. Jainschigg, ‘‘Unlocking the secrets of
computer viruses,’’Atari Explorer 8, 5 (Oct.
1988), pp. 28-35.

System: Atari

Description: This Atari virus infects the boot block of
floppy disks. When the system is booted from a
infected floppy disk, the virus is copied from the
boot block into memory. It attaches itself to the
function getbpd so that every timegetbpd is
called the virus is executed. When executed, the
virus first checks to see if the disk in drive A is
infected. If not, the virus copies itself from
memory onto the boot sector of the uninfected
disk and initializes a counter. If the disk is
already infected the counter is incremented.
When the counter reaches a certain value the root
directory and file access tables for the disk are
overwritten, making the disk unusable.

Genesis: Malicious: Replicating Trojan horse (virus)

Time: During operation

Place: Operating System: System Initialization

ACKNOWLEDGMENTS
The idea for this paper was conceived several years ago when
we were considering how to provide automated assistance for
detecting security flaws. We found that we lacked a good char-
acterization of the things we were looking for. It has had a long
gestation and many have assisted in its delivery. We are grate-
ful for the participation of Mark Weiser (then of the University
of Maryland) and LCDR Philip Myers of the Space and Naval
Warfare Combat Systems Command (SPAWAR) in this early
phase of the work. We also thank the National Computer Se-
curity Center and SPAWAR for their continuing financial sup-
port. The authors gratefully acknowledge the assistance
provided by the many reviewers of earlier drafts of this paper.
Their comments helped us refine the taxonomy, clarify the pre-
sentation, distinguish the true computer security flaws from the
mythical ones, and place them accurately in the taxonomy.
Comments from Gene Spafford, Matt Bishop, Paul Karger,
Steve Lipner, Robert Morris, Peter Neumann, Philip Porras,
James P. Anderson, and Preston Mullen were particularly ex-
tensive and helpful. Jurate Maciunas Landwehr suggested the
form of Fig. 4. Thomas Beth, Richard Bisbey II, Vronnie
Hoover, Dennis Ritchie, Mike Stolarchuck, Andrew Tanen-
baum, and Clark Weissman also provided useful comments and
encouragement; we apologize to any reviewers we have inad-
vertently omitted. Finally, we thank the anonymousComput-
ing Surveys referees who asked several questions that helped us
focus the presentation. Any remaining errors are, of course, our
responsibility.

REFERENCES

ABBOTT, R. P., CHIN, J. S., DONNELLEY, J. E., KONIGS-

FORD, W. L., TOKUBO, S.,AND WEBB, D. A.
1976. Security analysis and enhancements of
computer operating systems. NBSIR 76-1041,
National Bureau of Standards, ICST, (April
1976).

A Taxonomy of Computer Program Security Flaws 36 Landwehr, Bull, McDermott, and Choi

To appear,ACM Computing Surverys, 26,3 (Sept. 1994)

ANDERSON, J. P. 1972. Computer security technology
planning study. ESD-TR-73-51, Vols I and II,
NTIS AD758206, Hanscom Field, Bedford, MA
(October 1972).

IEEE COMPUTERSOCIETY 1990. Standard glossary of
software engineering terminology. ANSI/IEEE
Standard 610.12-1990. IEEE Press, New York.

BISBEY II, R. 1990. Private communication. (26 July
1990).

BISBEY II, R., AND HOLLINGWORTH, D. 1978. Protec-
tion analysis project final report. ISI/RR-78-13,
DTIC AD A056816, USC/Information Sciences
Institute (May 1978).

BREHMER, C. L. AND CARL, J. R. 1993. Incorporating
IEEE Standard 1044 into your anomaly tracking
process.CrossTalk, J. Defense Software Engi-
neering, 6, (Jan. 1993), 9-16.

CHILLAREGE, R., BHANDARI, I. S., CHAAR, J. K., HALLI-

DAY, M. J., MOEBUS, D. S., RAY, B. K., AND

WONG, M-Y. 1992. Orthogonal defect classifi-
cation—a concept for in-process measurements.
IEEE Trans. on Software Engineering 18, 11,
(Nov. 1992), 943-956.

COHEN, F. 1984. Computer viruses: theory and experi-
ments,7th DoD/NBS Computer Security Confer-
ence, Gaithersburg, MD (Sept. 1984), 240-263.

DEPARTMENT OFDEFENSE, 1985. Trusted Computer
System Evaluation Criteria, DoD 5200.28-STD
(December 1985).

DENNING, D. E. 1982.Cryptography and Data Security.
Addison-Wesley Publishing Company, Inc.,
Reading, MA.

DENNING, P. J. 1988. Computer viruses.American Sci-
entist 76 (May-June), 236-238.

ELMER-DEWITT, P. 1988. Invasion of the data snatchers,
TIME Magazine (Sept. 26), 62-67.

FERBRACHE, D. 1992.A Pathology of Computer Viruses.
Springer-Verlag, New York.

FLORAC, W. A. 1992. Software Quality Measurement:
A Framework for Counting Problems and De-
fects. CMU/SEI-92-TR-22, Software Engineer-
ing Institute, Pittsburgh, PA, (Sept.).

GASSER, M. 1988.Building a Secure Computer System.
Van Nostrand Reinhold, New York.

LAMPSON, B. W. 1973. A note on the confinement prob-
lem,Comm. ACM 16, 10 (October), 613-615.

LANDWEHR, C. E. 1983. The best available technologies
for computer security.IEEE COMPUTER 16, 7,
(July), 86-100.

LANDWEHR, C. E. 1981. Formal models for computer
security. ACM Computing Surveys 13, 3 (Sep-
tember), 247-278.

LAPRIE, J. C., Ed., 1992.Dependability: Basic Concepts
and Terminology. Vol. 6, Springer-Verlag Series
in Dependable Computing and Fault-Tolerant
Systems, New York.

LEVESON, N. AND TURNER, C. S. 1992. An investigation
of the Therac-25 accidents.UCI TR 92-108, Inf.
and Comp. Sci. Dept, Univ. of Cal.-Irvine, Irv-
ine, CA.

LINDE, R. R. 1975. Operating system penetration.
AFIPS National Computer Conference, 361-368.

MCDERMOTT, J. P. 1988. A technique for removing an
important class of Trojan horses from high order
languages,Proc. 11th National Computer Secu-
rity Conference, NBS/NCSC, Gaithersburg, MD,
(October), 114-117.

NEUMANN, P. G. 1978. Computer security evaluation,
1978 National Computer Conference, AFIPS
Conf. Proceedings 47, Arlington,VA1087-1095.

PETROSKI, H. 1992.To Engineer is Human: The Role of
Failure in Successful Design. Vintage Books,
New York, NY, 1992.

PFLEEGER, C. P. 1989.Security in Computing. Prentice
Hall, Englewood Cliffs, NJ.

ROCHLIS, J. A.AND EICHEN, M. W. 1989. With micro-
scope and tweezers: the worm from MIT’s per-
spective.Comm. ACM 32, 6 (June), 689-699.

SCHELL, R. R. 1979. Computer security: the Achilles
heel of the electronic Air Force?,Air University
Review 30, 2 (Jan.-Feb.), 16-33.

SCHOCH, J. F.AND HUPP, J. A. 1982. The ‘worm’ pro-
grams—early experience with a distributed com-
putation.Comm. ACM 25, 3 (March), 172-180.

SPAFFORD, E. H. 1989. Crisis and aftermath.Comm.
ACM 32, 6 (June), 678-687.

SULLIVAN , M. R.AND CHILLAREGE, R. 1992. A compar-
ison of software defects in database management
systems and operating systems.Proc. 22nd Int.
Symp. on Fault-Tolerant Computer Systems
(FTCS-22),Boston, MA,IEEE CS Press.

THOMPSON, K. 1984. Reflections on trusting trust,
Comm. ACM 27, 8 (August), 761-763.

WEISS, D. M. AND BASILI, V. R., 1985. Evaluating soft-

ware development by analysis of changes: some

data from the Software Engineering Laboratory.

IEEE Trans. Software Engineering SE-11, 2

(February), 157-168.

